Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshplss.s | |
|
lshplss.h | |
||
lshplss.w | |
||
lshplss.u | |
||
Assertion | lshplss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshplss.s | |
|
2 | lshplss.h | |
|
3 | lshplss.w | |
|
4 | lshplss.u | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 1 2 | islshp | |
8 | 3 7 | syl | |
9 | 4 8 | mpbid | |
10 | 9 | simp1d | |