Metamath Proof Explorer


Theorem lshplss

Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014)

Ref Expression
Hypotheses lshplss.s S=LSubSpW
lshplss.h H=LSHypW
lshplss.w φWLMod
lshplss.u φUH
Assertion lshplss φUS

Proof

Step Hyp Ref Expression
1 lshplss.s S=LSubSpW
2 lshplss.h H=LSHypW
3 lshplss.w φWLMod
4 lshplss.u φUH
5 eqid BaseW=BaseW
6 eqid LSpanW=LSpanW
7 5 6 1 2 islshp WLModUHUSUBaseWvBaseWLSpanWUv=BaseW
8 3 7 syl φUHUSUBaseWvBaseWLSpanWUv=BaseW
9 4 8 mpbid φUSUBaseWvBaseWLSpanWUv=BaseW
10 9 simp1d φUS