| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcntz.p |  | 
						
							| 2 |  | lsmcntz.s |  | 
						
							| 3 |  | lsmcntz.t |  | 
						
							| 4 |  | lsmcntz.u |  | 
						
							| 5 |  | lsmdisj.o |  | 
						
							| 6 | 2 | adantr |  | 
						
							| 7 | 3 | adantr |  | 
						
							| 8 | 4 | adantr |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 |  | simprr |  | 
						
							| 11 | 1 6 7 8 5 9 10 | lsmdisj2 |  | 
						
							| 12 | 1 6 7 8 5 9 | lsmdisj |  | 
						
							| 13 | 12 | simpld |  | 
						
							| 14 | 11 13 | jca |  | 
						
							| 15 |  | incom |  | 
						
							| 16 | 2 | adantr |  | 
						
							| 17 | 4 | adantr |  | 
						
							| 18 | 3 | adantr |  | 
						
							| 19 |  | incom |  | 
						
							| 20 |  | simprl |  | 
						
							| 21 | 19 20 | eqtrid |  | 
						
							| 22 |  | simprr |  | 
						
							| 23 | 1 16 17 18 5 21 22 | lsmdisj2 |  | 
						
							| 24 | 15 23 | eqtrid |  | 
						
							| 25 |  | incom |  | 
						
							| 26 | 1 18 16 17 5 20 | lsmdisjr |  | 
						
							| 27 | 26 | simpld |  | 
						
							| 28 | 25 27 | eqtrid |  | 
						
							| 29 | 24 28 | jca |  | 
						
							| 30 | 14 29 | impbida |  |