Metamath Proof Explorer


Theorem lsmelpr

Description: Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses lsmelpr.v V=BaseW
lsmelpr.n N=LSpanW
lsmelpr.p ˙=LSSumW
lsmelpr.w φWLMod
lsmelpr.x φXV
lsmelpr.y φYV
lsmelpr.z φZV
Assertion lsmelpr φXNYZNXNY˙NZ

Proof

Step Hyp Ref Expression
1 lsmelpr.v V=BaseW
2 lsmelpr.n N=LSpanW
3 lsmelpr.p ˙=LSSumW
4 lsmelpr.w φWLMod
5 lsmelpr.x φXV
6 lsmelpr.y φYV
7 lsmelpr.z φZV
8 eqid LSubSpW=LSubSpW
9 1 8 2 4 6 7 lspprcl φNYZLSubSpW
10 1 8 2 4 9 5 lspsnel5 φXNYZNXNYZ
11 1 2 3 4 6 7 lsmpr φNYZ=NY˙NZ
12 11 sseq2d φNXNYZNXNY˙NZ
13 10 12 bitrd φXNYZNXNY˙NZ