Metamath Proof Explorer


Theorem lsmss1b

Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmss1b TSubGrpGUSubGrpGTUT˙U=U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 1 lsmss1 TSubGrpGUSubGrpGTUT˙U=U
3 2 3expia TSubGrpGUSubGrpGTUT˙U=U
4 1 lsmub1 TSubGrpGUSubGrpGTT˙U
5 sseq2 T˙U=UTT˙UTU
6 4 5 syl5ibcom TSubGrpGUSubGrpGT˙U=UTU
7 3 6 impbid TSubGrpGUSubGrpGTUT˙U=U