Metamath Proof Explorer


Theorem lsmub2

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmub2 T SubGrp G U SubGrp G U T ˙ U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 subgsubm T SubGrp G T SubMnd G
3 eqid Base G = Base G
4 3 subgss U SubGrp G U Base G
5 3 1 lsmub2x T SubMnd G U Base G U T ˙ U
6 2 4 5 syl2an T SubGrp G U SubGrp G U T ˙ U