Metamath Proof Explorer


Theorem lspcl

Description: The span of a set of vectors is a subspace. ( spancl analog.) (Contributed by NM, 9-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v V=BaseW
lspval.s S=LSubSpW
lspval.n N=LSpanW
Assertion lspcl WLModUVNUS

Proof

Step Hyp Ref Expression
1 lspval.v V=BaseW
2 lspval.s S=LSubSpW
3 lspval.n N=LSpanW
4 1 2 3 lspf WLModN:𝒫VS
5 1 fvexi VV
6 5 elpw2 U𝒫VUV
7 6 biimpri UVU𝒫V
8 ffvelcdm N:𝒫VSU𝒫VNUS
9 4 7 8 syl2an WLModUVNUS