Metamath Proof Explorer


Theorem lspindp3

Description: Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v V=BaseW
lspindp3.p +˙=+W
lspindp3.o 0˙=0W
lspindp3.n N=LSpanW
lspindp3.w φWLVec
lspindp3.x φXV
lspindp3.y φYV0˙
lspindp3.e φNXNY
Assertion lspindp3 φNXNX+˙Y

Proof

Step Hyp Ref Expression
1 lspindp3.v V=BaseW
2 lspindp3.p +˙=+W
3 lspindp3.o 0˙=0W
4 lspindp3.n N=LSpanW
5 lspindp3.w φWLVec
6 lspindp3.x φXV
7 lspindp3.y φYV0˙
8 lspindp3.e φNXNY
9 5 adantr φNX=NX+˙YWLVec
10 6 adantr φNX=NX+˙YXV
11 7 adantr φNX=NX+˙YYV0˙
12 simpr φNX=NX+˙YNX=NX+˙Y
13 1 2 3 4 9 10 11 12 lspabs2 φNX=NX+˙YNX=NY
14 13 ex φNX=NX+˙YNX=NY
15 14 necon3d φNXNYNXNX+˙Y
16 8 15 mpd φNXNX+˙Y