Metamath Proof Explorer


Theorem lspprid1

Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lspprid.v V=BaseW
lspprid.n N=LSpanW
lspprid.w φWLMod
lspprid.x φXV
lspprid.y φYV
Assertion lspprid1 φXNXY

Proof

Step Hyp Ref Expression
1 lspprid.v V=BaseW
2 lspprid.n N=LSpanW
3 lspprid.w φWLMod
4 lspprid.x φXV
5 lspprid.y φYV
6 4 5 prssd φXYV
7 snsspr1 XXY
8 7 a1i φXXY
9 1 2 lspss WLModXYVXXYNXNXY
10 3 6 8 9 syl3anc φNXNXY
11 eqid LSubSpW=LSubSpW
12 1 11 2 3 4 5 lspprcl φNXYLSubSpW
13 1 11 2 3 12 4 lspsnel5 φXNXYNXNXY
14 10 13 mpbird φXNXY