Metamath Proof Explorer


Theorem lspprss

Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015)

Ref Expression
Hypotheses lspprss.s S=LSubSpW
lspprss.n N=LSpanW
lspprss.w φWLMod
lspprss.u φUS
lspprss.x φXU
lspprss.y φYU
Assertion lspprss φNXYU

Proof

Step Hyp Ref Expression
1 lspprss.s S=LSubSpW
2 lspprss.n N=LSpanW
3 lspprss.w φWLMod
4 lspprss.u φUS
5 lspprss.x φXU
6 lspprss.y φYU
7 5 6 prssd φXYU
8 1 2 lspssp WLModUSXYUNXYU
9 3 4 7 8 syl3anc φNXYU