Metamath Proof Explorer


Theorem lspprvacl

Description: The sum of two vectors belongs to their span. (Contributed by NM, 20-May-2015)

Ref Expression
Hypotheses lspprvacl.v V=BaseW
lspprvacl.p +˙=+W
lspprvacl.n N=LSpanW
lspprvacl.w φWLMod
lspprvacl.x φXV
lspprvacl.y φYV
Assertion lspprvacl φX+˙YNXY

Proof

Step Hyp Ref Expression
1 lspprvacl.v V=BaseW
2 lspprvacl.p +˙=+W
3 lspprvacl.n N=LSpanW
4 lspprvacl.w φWLMod
5 lspprvacl.x φXV
6 lspprvacl.y φYV
7 eqid LSubSpW=LSubSpW
8 1 7 3 4 5 6 lspprcl φNXYLSubSpW
9 1 3 4 5 6 lspprid1 φXNXY
10 1 3 4 5 6 lspprid2 φYNXY
11 2 7 lssvacl WLModNXYLSubSpWXNXYYNXYX+˙YNXY
12 4 8 9 10 11 syl22anc φX+˙YNXY