Metamath Proof Explorer


Theorem lspsnel3

Description: A member of the span of the singleton of a vector is a member of a subspace containing the vector. ( elspansn3 analog.) (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses lspsnss.s S=LSubSpW
lspsnss.n N=LSpanW
lspsnel3.w φWLMod
lspsnel3.u φUS
lspsnel3.x φXU
lspsnel3.y φYNX
Assertion lspsnel3 φYU

Proof

Step Hyp Ref Expression
1 lspsnss.s S=LSubSpW
2 lspsnss.n N=LSpanW
3 lspsnel3.w φWLMod
4 lspsnel3.u φUS
5 lspsnel3.x φXU
6 lspsnel3.y φYNX
7 1 2 lspsnss WLModUSXUNXU
8 3 4 5 7 syl3anc φNXU
9 8 6 sseldd φYU