Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Subspaces and spans in a left module
lspuni0
Next ⟩
lspun0
Metamath Proof Explorer
Ascii
Unicode
Theorem
lspuni0
Description:
Union of the span of the empty set.
(Contributed by
NM
, 14-Mar-2015)
Ref
Expression
Hypotheses
lspsn0.z
⊢
0
˙
=
0
W
lspsn0.n
⊢
N
=
LSpan
⁡
W
Assertion
lspuni0
⊢
W
∈
LMod
→
⋃
N
⁡
∅
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
lspsn0.z
⊢
0
˙
=
0
W
2
lspsn0.n
⊢
N
=
LSpan
⁡
W
3
1
2
lsp0
⊢
W
∈
LMod
→
N
⁡
∅
=
0
˙
4
3
unieqd
⊢
W
∈
LMod
→
⋃
N
⁡
∅
=
⋃
0
˙
5
1
fvexi
⊢
0
˙
∈
V
6
5
unisn
⊢
⋃
0
˙
=
0
˙
7
4
6
eqtrdi
⊢
W
∈
LMod
→
⋃
N
⁡
∅
=
0
˙