Metamath Proof Explorer


Theorem lspuni0

Description: Union of the span of the empty set. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lspsn0.z 0˙=0W
lspsn0.n N=LSpanW
Assertion lspuni0 WLModN=0˙

Proof

Step Hyp Ref Expression
1 lspsn0.z 0˙=0W
2 lspsn0.n N=LSpanW
3 1 2 lsp0 WLModN=0˙
4 3 unieqd WLModN=0˙
5 1 fvexi 0˙V
6 5 unisn 0˙=0˙
7 4 6 eqtrdi WLModN=0˙