Metamath Proof Explorer


Theorem lsslmod

Description: A submodule is a module. (Contributed by Stefan O'Rear, 12-Dec-2014)

Ref Expression
Hypotheses lsslss.x X=W𝑠U
lsslss.s S=LSubSpW
Assertion lsslmod WLModUSXLMod

Proof

Step Hyp Ref Expression
1 lsslss.x X=W𝑠U
2 lsslss.s S=LSubSpW
3 eqid BaseW=BaseW
4 1 3 2 islss3 WLModUSUBaseWXLMod
5 4 simplbda WLModUSXLMod