Metamath Proof Explorer


Theorem lt2addd

Description: Adding both side of two inequalities. Theorem I.25 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
lt2addd.4 φD
lt2addd.5 φA<C
lt2addd.6 φB<D
Assertion lt2addd φA+B<C+D

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 lt2addd.4 φD
5 lt2addd.5 φA<C
6 lt2addd.6 φB<D
7 2 4 6 ltled φBD
8 1 2 3 4 5 7 ltleaddd φA+B<C+D