Metamath Proof Explorer
		
		
		
		Description:  Adding both side of two inequalities.  Theorem I.25 of Apostol
         p. 20.  (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leidd.1 |  | 
					
						|  |  | ltnegd.2 |  | 
					
						|  |  | ltadd1d.3 |  | 
					
						|  |  | lt2addd.4 |  | 
					
						|  |  | lt2addd.5 |  | 
					
						|  |  | lt2addd.6 |  | 
				
					|  | Assertion | lt2addd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leidd.1 |  | 
						
							| 2 |  | ltnegd.2 |  | 
						
							| 3 |  | ltadd1d.3 |  | 
						
							| 4 |  | lt2addd.4 |  | 
						
							| 5 |  | lt2addd.5 |  | 
						
							| 6 |  | lt2addd.6 |  | 
						
							| 7 | 2 4 6 | ltled |  | 
						
							| 8 | 1 2 3 4 5 7 | ltleaddd |  |