Metamath Proof Explorer


Theorem lt3addmuld

Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt3addmuld.a φA
lt3addmuld.b φB
lt3addmuld.c φC
lt3addmuld.d φD
lt3addmuld.altd φA<D
lt3addmuld.bltd φB<D
lt3addmuld.cltd φC<D
Assertion lt3addmuld φA+B+C<3D

Proof

Step Hyp Ref Expression
1 lt3addmuld.a φA
2 lt3addmuld.b φB
3 lt3addmuld.c φC
4 lt3addmuld.d φD
5 lt3addmuld.altd φA<D
6 lt3addmuld.bltd φB<D
7 lt3addmuld.cltd φC<D
8 1 2 readdcld φA+B
9 2re 2
10 9 a1i φ2
11 10 4 remulcld φ2D
12 1 2 4 5 6 lt2addmuld φA+B<2D
13 8 3 11 4 12 7 lt2addd φA+B+C<2D+D
14 10 recnd φ2
15 4 recnd φD
16 14 15 adddirp1d φ2+1D=2D+D
17 2p1e3 2+1=3
18 17 a1i φ2+1=3
19 18 oveq1d φ2+1D=3D
20 16 19 eqtr3d φ2D+D=3D
21 13 20 breqtrd φA+B+C<3D