Metamath Proof Explorer


Theorem absnpncan2d

Description: Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses absnpncan2d.a φA
absnpncan2d.b φB
absnpncan2d.c φC
absnpncan2d.d φD
Assertion absnpncan2d φADAB+BC+CD

Proof

Step Hyp Ref Expression
1 absnpncan2d.a φA
2 absnpncan2d.b φB
3 absnpncan2d.c φC
4 absnpncan2d.d φD
5 1 4 subcld φAD
6 5 abscld φAD
7 1 3 subcld φAC
8 7 abscld φAC
9 3 4 subcld φCD
10 9 abscld φCD
11 8 10 readdcld φAC+CD
12 1 2 subcld φAB
13 12 abscld φAB
14 2 3 subcld φBC
15 14 abscld φBC
16 13 15 readdcld φAB+BC
17 16 10 readdcld φAB+BC+CD
18 1 4 3 abs3difd φADAC+CD
19 1 3 2 abs3difd φACAB+BC
20 8 16 10 19 leadd1dd φAC+CDAB+BC+CD
21 6 11 17 18 20 letrd φADAB+BC+CD