Metamath Proof Explorer


Theorem ltaddnegr

Description: Adding a negative number to another number decreases it. (Contributed by AV, 19-Mar-2021)

Ref Expression
Assertion ltaddnegr ABA<0A+B<B

Proof

Step Hyp Ref Expression
1 ltaddneg ABA<0B+A<B
2 recn BB
3 recn AA
4 addcom BAB+A=A+B
5 2 3 4 syl2anr ABB+A=A+B
6 5 breq1d ABB+A<BA+B<B
7 1 6 bitrd ABA<0A+B<B