Metamath Proof Explorer


Theorem ltaddrpd

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φA
rpgecld.2 φB+
Assertion ltaddrpd φA<A+B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φA
2 rpgecld.2 φB+
3 ltaddrp AB+A<A+B
4 1 2 3 syl2anc φA<A+B