Metamath Proof Explorer


Theorem ltaddrpd

Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1 φ A
rpgecld.2 φ B +
Assertion ltaddrpd φ A < A + B

Proof

Step Hyp Ref Expression
1 rpgecld.1 φ A
2 rpgecld.2 φ B +
3 ltaddrp A B + A < A + B
4 1 2 3 syl2anc φ A < A + B