Metamath Proof Explorer


Theorem ltaddsublt

Description: Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018)

Ref Expression
Assertion ltaddsublt ABCB<CA+B-C<A

Proof

Step Hyp Ref Expression
1 ltadd2 BCAB<CA+B<A+C
2 1 3comr ABCB<CA+B<A+C
3 readdcl ABA+B
4 3 3adant3 ABCA+B
5 simp3 ABCC
6 simp1 ABCA
7 4 5 6 ltsubaddd ABCA+B-C<AA+B<A+C
8 2 7 bitr4d ABCB<CA+B-C<A