Metamath Proof Explorer


Theorem ltaddsublt

Description: Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018)

Ref Expression
Assertion ltaddsublt A B C B < C A + B - C < A

Proof

Step Hyp Ref Expression
1 ltadd2 B C A B < C A + B < A + C
2 1 3comr A B C B < C A + B < A + C
3 readdcl A B A + B
4 3 3adant3 A B C A + B
5 simp3 A B C C
6 simp1 A B C A
7 4 5 6 ltsubaddd A B C A + B - C < A A + B < A + C
8 2 7 bitr4d A B C B < C A + B - C < A