Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
ltaddsublt
Next ⟩
1le1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltaddsublt
Description:
Addition and subtraction on one side of 'less than'.
(Contributed by
AV
, 24-Nov-2018)
Ref
Expression
Assertion
ltaddsublt
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
<
C
↔
A
+
B
-
C
<
A
Proof
Step
Hyp
Ref
Expression
1
ltadd2
⊢
B
∈
ℝ
∧
C
∈
ℝ
∧
A
∈
ℝ
→
B
<
C
↔
A
+
B
<
A
+
C
2
1
3comr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
<
C
↔
A
+
B
<
A
+
C
3
readdcl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
∈
ℝ
4
3
3adant3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
+
B
∈
ℝ
5
simp3
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
C
∈
ℝ
6
simp1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
7
4
5
6
ltsubaddd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
+
B
-
C
<
A
↔
A
+
B
<
A
+
C
8
2
7
bitr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
<
C
↔
A
+
B
-
C
<
A