Metamath Proof Explorer


Theorem ltdivgt1

Description: Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses ltdivgt1.1 φA+
ltdivgt1.2 φB+
Assertion ltdivgt1 φ1<BAB<A

Proof

Step Hyp Ref Expression
1 ltdivgt1.1 φA+
2 ltdivgt1.2 φB+
3 1rp 1+
4 3 a1i φ1+
5 4 2 1 ltdiv2d φ1<BAB<A1
6 1 rpcnd φA
7 6 div1d φA1=A
8 7 breq2d φAB<A1AB<A
9 5 8 bitrd φ1<BAB<A