Metamath Proof Explorer


Theorem ltlecasei

Description: Ordering elimination by cases. (Contributed by NM, 1-Jul-2007) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltlecasei.1 φA<Bψ
ltlecasei.2 φBAψ
ltlecasei.3 φA
ltlecasei.4 φB
Assertion ltlecasei φψ

Proof

Step Hyp Ref Expression
1 ltlecasei.1 φA<Bψ
2 ltlecasei.2 φBAψ
3 ltlecasei.3 φA
4 ltlecasei.4 φB
5 lelttric BABAA<B
6 4 3 5 syl2anc φBAA<B
7 2 1 6 mpjaodan φψ