Metamath Proof Explorer


Theorem ltnegcon1

Description: Contraposition of negative in 'less than'. (Contributed by NM, 8-Nov-2004)

Ref Expression
Assertion ltnegcon1 ABA<BB<A

Proof

Step Hyp Ref Expression
1 renegcl AA
2 ltneg ABA<BB<A
3 1 2 sylan ABA<BB<A
4 simpl ABA
5 4 recnd ABA
6 5 negnegd ABA=A
7 6 breq2d ABB<AB<A
8 3 7 bitrd ABA<BB<A