Metamath Proof Explorer


Theorem ltrn11at

Description: Frequently used one-to-one property of lattice translation atoms. (Contributed by NM, 5-May-2013)

Ref Expression
Hypotheses ltrneq2.a A=AtomsK
ltrneq2.h H=LHypK
ltrneq2.t T=LTrnKW
Assertion ltrn11at KHLWHFTPAQAPQFPFQ

Proof

Step Hyp Ref Expression
1 ltrneq2.a A=AtomsK
2 ltrneq2.h H=LHypK
3 ltrneq2.t T=LTrnKW
4 simp33 KHLWHFTPAQAPQPQ
5 simp1 KHLWHFTPAQAPQKHLWH
6 simp2 KHLWHFTPAQAPQFT
7 simp31 KHLWHFTPAQAPQPA
8 eqid BaseK=BaseK
9 8 1 atbase PAPBaseK
10 7 9 syl KHLWHFTPAQAPQPBaseK
11 simp32 KHLWHFTPAQAPQQA
12 8 1 atbase QAQBaseK
13 11 12 syl KHLWHFTPAQAPQQBaseK
14 8 2 3 ltrn11 KHLWHFTPBaseKQBaseKFP=FQP=Q
15 5 6 10 13 14 syl112anc KHLWHFTPAQAPQFP=FQP=Q
16 15 necon3bid KHLWHFTPAQAPQFPFQPQ
17 4 16 mpbird KHLWHFTPAQAPQFPFQ