Metamath Proof Explorer


Theorem ltrnideq

Description: Property of the identity lattice translation. (Contributed by NM, 27-May-2012)

Ref Expression
Hypotheses ltrnnidn.b B=BaseK
ltrnnidn.l ˙=K
ltrnnidn.a A=AtomsK
ltrnnidn.h H=LHypK
ltrnnidn.t T=LTrnKW
Assertion ltrnideq KHLWHFTPA¬P˙WF=IBFP=P

Proof

Step Hyp Ref Expression
1 ltrnnidn.b B=BaseK
2 ltrnnidn.l ˙=K
3 ltrnnidn.a A=AtomsK
4 ltrnnidn.h H=LHypK
5 ltrnnidn.t T=LTrnKW
6 simpr KHLWHFTPA¬P˙WF=IBF=IB
7 6 fveq1d KHLWHFTPA¬P˙WF=IBFP=IBP
8 simpl3l KHLWHFTPA¬P˙WF=IBPA
9 1 3 atbase PAPB
10 fvresi PBIBP=P
11 8 9 10 3syl KHLWHFTPA¬P˙WF=IBIBP=P
12 7 11 eqtrd KHLWHFTPA¬P˙WF=IBFP=P
13 12 ex KHLWHFTPA¬P˙WF=IBFP=P
14 simpl1 KHLWHFTPA¬P˙WFIBKHLWH
15 simpl2 KHLWHFTPA¬P˙WFIBFT
16 simpr KHLWHFTPA¬P˙WFIBFIB
17 simpl3 KHLWHFTPA¬P˙WFIBPA¬P˙W
18 1 2 3 4 5 ltrnnidn KHLWHFTFIBPA¬P˙WFPP
19 14 15 16 17 18 syl121anc KHLWHFTPA¬P˙WFIBFPP
20 19 ex KHLWHFTPA¬P˙WFIBFPP
21 20 necon4d KHLWHFTPA¬P˙WFP=PF=IB
22 13 21 impbid KHLWHFTPA¬P˙WF=IBFP=P