Metamath Proof Explorer


Theorem ltsopi

Description: Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996) (Proof shortened by Mario Carneiro, 10-Jul-2014) (New usage is discouraged.)

Ref Expression
Assertion ltsopi <𝑵Or𝑵

Proof

Step Hyp Ref Expression
1 df-ni 𝑵=ω
2 difss ωω
3 omsson ωOn
4 2 3 sstri ωOn
5 1 4 eqsstri 𝑵On
6 epweon EWeOn
7 weso EWeOnEOrOn
8 6 7 ax-mp EOrOn
9 soss 𝑵OnEOrOnEOr𝑵
10 5 8 9 mp2 EOr𝑵
11 df-lti <𝑵=E𝑵×𝑵
12 soeq1 <𝑵=E𝑵×𝑵<𝑵Or𝑵E𝑵×𝑵Or𝑵
13 11 12 ax-mp <𝑵Or𝑵E𝑵×𝑵Or𝑵
14 soinxp EOr𝑵E𝑵×𝑵Or𝑵
15 13 14 bitr4i <𝑵Or𝑵EOr𝑵
16 10 15 mpbir <𝑵Or𝑵