Metamath Proof Explorer


Theorem lublecl

Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018)

Ref Expression
Hypotheses lublecl.b B=BaseK
lublecl.l ˙=K
lublecl.u U=lubK
lublecl.k φKPoset
lublecl.x φXB
Assertion lublecl φyB|y˙XdomU

Proof

Step Hyp Ref Expression
1 lublecl.b B=BaseK
2 lublecl.l ˙=K
3 lublecl.u U=lubK
4 lublecl.k φKPoset
5 lublecl.x φXB
6 ssrab2 yB|y˙XB
7 6 a1i φyB|y˙XB
8 1 2 3 4 5 lublecllem φxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X
9 8 ralrimiva φxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X
10 reu6i XBxBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wx=X∃!xBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
11 5 9 10 syl2anc φ∃!xBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
12 biid zyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙wzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
13 1 2 3 12 4 lubeldm φyB|y˙XdomUyB|y˙XB∃!xBzyB|y˙Xz˙xwBzyB|y˙Xz˙wx˙w
14 7 11 13 mpbir2and φyB|y˙XdomU