Metamath Proof Explorer


Theorem lubub

Description: The LUB of a complete lattice subset is an upper bound. (Contributed by NM, 19-Oct-2011)

Ref Expression
Hypotheses lublem.b B=BaseK
lublem.l ˙=K
lublem.u U=lubK
Assertion lubub KCLatSBXSX˙US

Proof

Step Hyp Ref Expression
1 lublem.b B=BaseK
2 lublem.l ˙=K
3 lublem.u U=lubK
4 1 2 3 lublem KCLatSBySy˙USzBySy˙zUS˙z
5 4 simpld KCLatSBySy˙US
6 breq1 y=Xy˙USX˙US
7 6 rspccva ySy˙USXSX˙US
8 5 7 stoic3 KCLatSBXSX˙US