Metamath Proof Explorer


Theorem lukshef-ax2

Description: A single axiom for propositional calculus discovered by Jan Lukasiewicz. See: Fitelson,Some recent results in algebra and logical calculi obtained using automated reasoning, 2003 (axiom L2 on slide 8). (Contributed by Anthony Hart, 14-Aug-2011)

Ref Expression
Assertion lukshef-ax2 φψχφχφθψφθφθ

Proof

Step Hyp Ref Expression
1 nannan φψχφψχ
2 1 biimpi φψχφψχ
3 simpr ψχχ
4 3 imim2i φψχφχ
5 simpl ψχψ
6 5 imim2i φψχφψ
7 pm2.27 φφψψ
8 7 anim2d φθφψθψ
9 8 expdimp φθφψθψ
10 6 9 syl5com φψχφθθψ
11 ancr φχφχφ
12 11 anim1i φχφθθψφχφφθθψ
13 4 10 12 syl2anc φψχφχφφθθψ
14 con3 φθθψ¬θψ¬φθ
15 df-nan θψ¬θψ
16 df-nan φθ¬φθ
17 14 15 16 3imtr4g φθθψθψφθ
18 17 anim2i φχφφθθψφχφθψφθ
19 nannan φχφφχφ
20 19 biimpri φχφφχφ
21 nanim θψφθθψφθφθ
22 21 biimpi θψφθθψφθφθ
23 20 22 anim12i φχφθψφθφχφθψφθφθ
24 2 13 18 23 4syl φψχφχφθψφθφθ
25 nannan φψχφχφθψφθφθφψχφχφθψφθφθ
26 24 25 mpbir φψχφχφθψφθφθ