Metamath Proof Explorer


Theorem lvecpsslmod

Description: The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod ) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec . (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion lvecpsslmod LVec LMod

Proof

Step Hyp Ref Expression
1 lveclmod v LVec v LMod
2 1 ssriv LVec LMod
3 vex i V
4 vex z V
5 3 4 pm3.2i i V z V
6 eqid Base ndx z + ndx z z z ndx z z z = Base ndx z + ndx z z z ndx z z z
7 eqid Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i = Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i
8 6 7 lmod1zr i V z V Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod
9 6 7 lmod1zrnlvec i V z V Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec
10 df-nel Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec ¬ Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec
11 9 10 sylib i V z V ¬ Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec
12 8 11 jca i V z V Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod ¬ Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec
13 nelne1 Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod ¬ Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec LMod LVec
14 13 necomd Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LMod ¬ Base ndx i + ndx i i i Scalar ndx Base ndx z + ndx z z z ndx z z z ndx z i i LVec LVec LMod
15 5 12 14 mp2b LVec LMod
16 df-pss LVec LMod LVec LMod LVec LMod
17 2 15 16 mpbir2an LVec LMod