Metamath Proof Explorer


Theorem ldepsnlinc

Description: The reverse implication of islindeps2 does not hold for arbitrary (left) modules, see note in Roman p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combinantion of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa and zlmodzxznm . (Contributed by AV, 25-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Assertion ldepsnlinc m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v

Proof

Step Hyp Ref Expression
1 eqid ring freeLMod 0 1 = ring freeLMod 0 1
2 1 zlmodzxzlmod ring freeLMod 0 1 LMod ring = Scalar ring freeLMod 0 1
3 2 simpli ring freeLMod 0 1 LMod
4 3z 3
5 6nn 6
6 5 nnzi 6
7 1 zlmodzxzel 3 6 0 3 1 6 Base ring freeLMod 0 1
8 4 6 7 mp2an 0 3 1 6 Base ring freeLMod 0 1
9 2z 2
10 4z 4
11 1 zlmodzxzel 2 4 0 2 1 4 Base ring freeLMod 0 1
12 9 10 11 mp2an 0 2 1 4 Base ring freeLMod 0 1
13 prelpwi 0 3 1 6 Base ring freeLMod 0 1 0 2 1 4 Base ring freeLMod 0 1 0 3 1 6 0 2 1 4 𝒫 Base ring freeLMod 0 1
14 8 12 13 mp2an 0 3 1 6 0 2 1 4 𝒫 Base ring freeLMod 0 1
15 eqid 0 3 1 6 = 0 3 1 6
16 eqid 0 2 1 4 = 0 2 1 4
17 1 15 16 zlmodzxzldep 0 3 1 6 0 2 1 4 linDepS ring freeLMod 0 1
18 1 15 16 ldepsnlinclem1 f Base ring 0 2 1 4 f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
19 simpr ring freeLMod 0 1 LMod ring = Scalar ring freeLMod 0 1 ring = Scalar ring freeLMod 0 1
20 19 eqcomd ring freeLMod 0 1 LMod ring = Scalar ring freeLMod 0 1 Scalar ring freeLMod 0 1 = ring
21 2 20 ax-mp Scalar ring freeLMod 0 1 = ring
22 21 fveq2i Base Scalar ring freeLMod 0 1 = Base ring
23 22 oveq1i Base Scalar ring freeLMod 0 1 0 2 1 4 = Base ring 0 2 1 4
24 18 23 eleq2s f Base Scalar ring freeLMod 0 1 0 2 1 4 f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
25 24 a1d f Base Scalar ring freeLMod 0 1 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
26 25 rgen f Base Scalar ring freeLMod 0 1 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
27 1 15 16 ldepsnlinclem2 f Base ring 0 3 1 6 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
28 22 oveq1i Base Scalar ring freeLMod 0 1 0 3 1 6 = Base ring 0 3 1 6
29 27 28 eleq2s f Base Scalar ring freeLMod 0 1 0 3 1 6 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
30 29 a1d f Base Scalar ring freeLMod 0 1 0 3 1 6 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
31 30 rgen f Base Scalar ring freeLMod 0 1 0 3 1 6 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
32 prex 0 3 1 6 V
33 prex 0 2 1 4 V
34 sneq v = 0 3 1 6 v = 0 3 1 6
35 34 difeq2d v = 0 3 1 6 0 3 1 6 0 2 1 4 v = 0 3 1 6 0 2 1 4 0 3 1 6
36 1 15 16 zlmodzxzldeplem 0 3 1 6 0 2 1 4
37 difprsn1 0 3 1 6 0 2 1 4 0 3 1 6 0 2 1 4 0 3 1 6 = 0 2 1 4
38 36 37 ax-mp 0 3 1 6 0 2 1 4 0 3 1 6 = 0 2 1 4
39 35 38 eqtrdi v = 0 3 1 6 0 3 1 6 0 2 1 4 v = 0 2 1 4
40 39 oveq2d v = 0 3 1 6 Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v = Base Scalar ring freeLMod 0 1 0 2 1 4
41 39 oveq2d v = 0 3 1 6 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v = f linC ring freeLMod 0 1 0 2 1 4
42 id v = 0 3 1 6 v = 0 3 1 6
43 41 42 neeq12d v = 0 3 1 6 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
44 43 imbi2d v = 0 3 1 6 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
45 40 44 raleqbidv v = 0 3 1 6 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v f Base Scalar ring freeLMod 0 1 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6
46 sneq v = 0 2 1 4 v = 0 2 1 4
47 46 difeq2d v = 0 2 1 4 0 3 1 6 0 2 1 4 v = 0 3 1 6 0 2 1 4 0 2 1 4
48 difprsn2 0 3 1 6 0 2 1 4 0 3 1 6 0 2 1 4 0 2 1 4 = 0 3 1 6
49 36 48 ax-mp 0 3 1 6 0 2 1 4 0 2 1 4 = 0 3 1 6
50 47 49 eqtrdi v = 0 2 1 4 0 3 1 6 0 2 1 4 v = 0 3 1 6
51 50 oveq2d v = 0 2 1 4 Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v = Base Scalar ring freeLMod 0 1 0 3 1 6
52 50 oveq2d v = 0 2 1 4 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v = f linC ring freeLMod 0 1 0 3 1 6
53 id v = 0 2 1 4 v = 0 2 1 4
54 52 53 neeq12d v = 0 2 1 4 f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
55 54 imbi2d v = 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
56 51 55 raleqbidv v = 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v f Base Scalar ring freeLMod 0 1 0 3 1 6 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
57 32 33 45 56 ralpr v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v f Base Scalar ring freeLMod 0 1 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 2 1 4 0 3 1 6 f Base Scalar ring freeLMod 0 1 0 3 1 6 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4
58 26 31 57 mpbir2an v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
59 17 58 pm3.2i 0 3 1 6 0 2 1 4 linDepS ring freeLMod 0 1 v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
60 breq1 s = 0 3 1 6 0 2 1 4 s linDepS ring freeLMod 0 1 0 3 1 6 0 2 1 4 linDepS ring freeLMod 0 1
61 id s = 0 3 1 6 0 2 1 4 s = 0 3 1 6 0 2 1 4
62 difeq1 s = 0 3 1 6 0 2 1 4 s v = 0 3 1 6 0 2 1 4 v
63 62 oveq2d s = 0 3 1 6 0 2 1 4 Base Scalar ring freeLMod 0 1 s v = Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v
64 62 oveq2d s = 0 3 1 6 0 2 1 4 f linC ring freeLMod 0 1 s v = f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v
65 64 neeq1d s = 0 3 1 6 0 2 1 4 f linC ring freeLMod 0 1 s v v f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
66 65 imbi2d s = 0 3 1 6 0 2 1 4 finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
67 63 66 raleqbidv s = 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
68 61 67 raleqbidv s = 0 3 1 6 0 2 1 4 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
69 60 68 anbi12d s = 0 3 1 6 0 2 1 4 s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v 0 3 1 6 0 2 1 4 linDepS ring freeLMod 0 1 v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v
70 69 rspcev 0 3 1 6 0 2 1 4 𝒫 Base ring freeLMod 0 1 0 3 1 6 0 2 1 4 linDepS ring freeLMod 0 1 v 0 3 1 6 0 2 1 4 f Base Scalar ring freeLMod 0 1 0 3 1 6 0 2 1 4 v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 0 3 1 6 0 2 1 4 v v s 𝒫 Base ring freeLMod 0 1 s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
71 14 59 70 mp2an s 𝒫 Base ring freeLMod 0 1 s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
72 fveq2 m = ring freeLMod 0 1 Base m = Base ring freeLMod 0 1
73 72 pweqd m = ring freeLMod 0 1 𝒫 Base m = 𝒫 Base ring freeLMod 0 1
74 breq2 m = ring freeLMod 0 1 s linDepS m s linDepS ring freeLMod 0 1
75 2fveq3 m = ring freeLMod 0 1 Base Scalar m = Base Scalar ring freeLMod 0 1
76 75 oveq1d m = ring freeLMod 0 1 Base Scalar m s v = Base Scalar ring freeLMod 0 1 s v
77 2fveq3 m = ring freeLMod 0 1 0 Scalar m = 0 Scalar ring freeLMod 0 1
78 77 breq2d m = ring freeLMod 0 1 finSupp 0 Scalar m f finSupp 0 Scalar ring freeLMod 0 1 f
79 fveq2 m = ring freeLMod 0 1 linC m = linC ring freeLMod 0 1
80 79 oveqd m = ring freeLMod 0 1 f linC m s v = f linC ring freeLMod 0 1 s v
81 80 neeq1d m = ring freeLMod 0 1 f linC m s v v f linC ring freeLMod 0 1 s v v
82 78 81 imbi12d m = ring freeLMod 0 1 finSupp 0 Scalar m f f linC m s v v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
83 76 82 raleqbidv m = ring freeLMod 0 1 f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
84 83 ralbidv m = ring freeLMod 0 1 v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
85 74 84 anbi12d m = ring freeLMod 0 1 s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
86 73 85 rexeqbidv m = ring freeLMod 0 1 s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v s 𝒫 Base ring freeLMod 0 1 s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v
87 86 rspcev ring freeLMod 0 1 LMod s 𝒫 Base ring freeLMod 0 1 s linDepS ring freeLMod 0 1 v s f Base Scalar ring freeLMod 0 1 s v finSupp 0 Scalar ring freeLMod 0 1 f f linC ring freeLMod 0 1 s v v m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v
88 3 71 87 mp2an m LMod s 𝒫 Base m s linDepS m v s f Base Scalar m s v finSupp 0 Scalar m f f linC m s v v