Metamath Proof Explorer


Theorem ldepsnlinclem2

Description: Lemma 2 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z=ringfreeLMod01
zlmodzxzldep.a A=0316
zlmodzxzldep.b B=0214
Assertion ldepsnlinclem2 FBaseringAFlinCZAB

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z=ringfreeLMod01
2 zlmodzxzldep.a A=0316
3 zlmodzxzldep.b B=0214
4 elmapi FBaseringAF:ABasering
5 prex 0316V
6 2 5 eqeltri AV
7 6 fsn2 F:ABaseringFABaseringF=AFA
8 oveq1 F=AFAFlinCZA=AFAlinCZA
9 8 adantl FABaseringF=AFAFlinCZA=AFAlinCZA
10 1 zlmodzxzlmod ZLModring=ScalarZ
11 10 simpli ZLMod
12 11 a1i FABaseringF=AFAZLMod
13 3z 3
14 6nn 6
15 14 nnzi 6
16 1 zlmodzxzel 360316BaseZ
17 13 15 16 mp2an 0316BaseZ
18 2 17 eqeltri ABaseZ
19 18 a1i FABaseringF=AFAABaseZ
20 simpl FABaseringF=AFAFABasering
21 eqid BaseZ=BaseZ
22 10 simpri ring=ScalarZ
23 eqid Basering=Basering
24 eqid Z=Z
25 21 22 23 24 lincvalsng ZLModABaseZFABaseringAFAlinCZA=FAZA
26 12 19 20 25 syl3anc FABaseringF=AFAAFAlinCZA=FAZA
27 9 26 eqtrd FABaseringF=AFAFlinCZA=FAZA
28 eqid 0010=0010
29 eqid -Z=-Z
30 1 28 24 29 2 3 zlmodzxznm iiZABiZBA
31 r19.26 iiZABiZBAiiZABiiZBA
32 oveq1 i=FAiZA=FAZA
33 32 neeq1d i=FAiZABFAZAB
34 33 rspcv FAiiZABFAZAB
35 zringbas =Basering
36 35 eqcomi Basering=
37 36 eleq2i FABaseringFA
38 37 biimpi FABaseringFA
39 38 adantr FABaseringF=AFAFA
40 34 39 syl11 iiZABFABaseringF=AFAFAZAB
41 40 adantr iiZABiiZBAFABaseringF=AFAFAZAB
42 31 41 sylbi iiZABiZBAFABaseringF=AFAFAZAB
43 30 42 ax-mp FABaseringF=AFAFAZAB
44 27 43 eqnetrd FABaseringF=AFAFlinCZAB
45 7 44 sylbi F:ABaseringFlinCZAB
46 4 45 syl FBaseringAFlinCZAB