Metamath Proof Explorer


Theorem ldepsnlinclem2

Description: Lemma 2 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
Assertion ldepsnlinclem2 F Base ring A F linC Z A B

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 elmapi F Base ring A F : A Base ring
5 prex 0 3 1 6 V
6 2 5 eqeltri A V
7 6 fsn2 F : A Base ring F A Base ring F = A F A
8 oveq1 F = A F A F linC Z A = A F A linC Z A
9 8 adantl F A Base ring F = A F A F linC Z A = A F A linC Z A
10 1 zlmodzxzlmod Z LMod ring = Scalar Z
11 10 simpli Z LMod
12 11 a1i F A Base ring F = A F A Z LMod
13 3z 3
14 6nn 6
15 14 nnzi 6
16 1 zlmodzxzel 3 6 0 3 1 6 Base Z
17 13 15 16 mp2an 0 3 1 6 Base Z
18 2 17 eqeltri A Base Z
19 18 a1i F A Base ring F = A F A A Base Z
20 simpl F A Base ring F = A F A F A Base ring
21 eqid Base Z = Base Z
22 10 simpri ring = Scalar Z
23 eqid Base ring = Base ring
24 eqid Z = Z
25 21 22 23 24 lincvalsng Z LMod A Base Z F A Base ring A F A linC Z A = F A Z A
26 12 19 20 25 syl3anc F A Base ring F = A F A A F A linC Z A = F A Z A
27 9 26 eqtrd F A Base ring F = A F A F linC Z A = F A Z A
28 eqid 0 0 1 0 = 0 0 1 0
29 eqid - Z = - Z
30 1 28 24 29 2 3 zlmodzxznm i i Z A B i Z B A
31 r19.26 i i Z A B i Z B A i i Z A B i i Z B A
32 oveq1 i = F A i Z A = F A Z A
33 32 neeq1d i = F A i Z A B F A Z A B
34 33 rspcv F A i i Z A B F A Z A B
35 zringbas = Base ring
36 35 eqcomi Base ring =
37 36 eleq2i F A Base ring F A
38 37 biimpi F A Base ring F A
39 38 adantr F A Base ring F = A F A F A
40 34 39 syl11 i i Z A B F A Base ring F = A F A F A Z A B
41 40 adantr i i Z A B i i Z B A F A Base ring F = A F A F A Z A B
42 31 41 sylbi i i Z A B i Z B A F A Base ring F = A F A F A Z A B
43 30 42 ax-mp F A Base ring F = A F A F A Z A B
44 27 43 eqnetrd F A Base ring F = A F A F linC Z A B
45 7 44 sylbi F : A Base ring F linC Z A B
46 4 45 syl F Base ring A F linC Z A B