Description: Lemma 2 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zlmodzxzldep.z | |
|
zlmodzxzldep.a | |
||
zlmodzxzldep.b | |
||
Assertion | ldepsnlinclem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxzldep.z | |
|
2 | zlmodzxzldep.a | |
|
3 | zlmodzxzldep.b | |
|
4 | elmapi | |
|
5 | prex | |
|
6 | 2 5 | eqeltri | |
7 | 6 | fsn2 | |
8 | oveq1 | |
|
9 | 8 | adantl | |
10 | 1 | zlmodzxzlmod | |
11 | 10 | simpli | |
12 | 11 | a1i | |
13 | 3z | |
|
14 | 6nn | |
|
15 | 14 | nnzi | |
16 | 1 | zlmodzxzel | |
17 | 13 15 16 | mp2an | |
18 | 2 17 | eqeltri | |
19 | 18 | a1i | |
20 | simpl | |
|
21 | eqid | |
|
22 | 10 | simpri | |
23 | eqid | |
|
24 | eqid | |
|
25 | 21 22 23 24 | lincvalsng | |
26 | 12 19 20 25 | syl3anc | |
27 | 9 26 | eqtrd | |
28 | eqid | |
|
29 | eqid | |
|
30 | 1 28 24 29 2 3 | zlmodzxznm | |
31 | r19.26 | |
|
32 | oveq1 | |
|
33 | 32 | neeq1d | |
34 | 33 | rspcv | |
35 | zringbas | |
|
36 | 35 | eqcomi | |
37 | 36 | eleq2i | |
38 | 37 | biimpi | |
39 | 38 | adantr | |
40 | 34 39 | syl11 | |
41 | 40 | adantr | |
42 | 31 41 | sylbi | |
43 | 30 42 | ax-mp | |
44 | 27 43 | eqnetrd | |
45 | 7 44 | sylbi | |
46 | 4 45 | syl | |