| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | elmapi |  |-  ( F e. ( ( Base ` ZZring ) ^m { A } ) -> F : { A } --> ( Base ` ZZring ) ) | 
						
							| 5 |  | prex |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. _V | 
						
							| 6 | 2 5 | eqeltri |  |-  A e. _V | 
						
							| 7 | 6 | fsn2 |  |-  ( F : { A } --> ( Base ` ZZring ) <-> ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) ) | 
						
							| 8 |  | oveq1 |  |-  ( F = { <. A , ( F ` A ) >. } -> ( F ( linC ` Z ) { A } ) = ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) = ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) ) | 
						
							| 10 | 1 | zlmodzxzlmod |  |-  ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) | 
						
							| 11 | 10 | simpli |  |-  Z e. LMod | 
						
							| 12 | 11 | a1i |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> Z e. LMod ) | 
						
							| 13 |  | 3z |  |-  3 e. ZZ | 
						
							| 14 |  | 6nn |  |-  6 e. NN | 
						
							| 15 | 14 | nnzi |  |-  6 e. ZZ | 
						
							| 16 | 1 | zlmodzxzel |  |-  ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) | 
						
							| 17 | 13 15 16 | mp2an |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) | 
						
							| 18 | 2 17 | eqeltri |  |-  A e. ( Base ` Z ) | 
						
							| 19 | 18 | a1i |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> A e. ( Base ` Z ) ) | 
						
							| 20 |  | simpl |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ` A ) e. ( Base ` ZZring ) ) | 
						
							| 21 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 22 | 10 | simpri |  |-  ZZring = ( Scalar ` Z ) | 
						
							| 23 |  | eqid |  |-  ( Base ` ZZring ) = ( Base ` ZZring ) | 
						
							| 24 |  | eqid |  |-  ( .s ` Z ) = ( .s ` Z ) | 
						
							| 25 | 21 22 23 24 | lincvalsng |  |-  ( ( Z e. LMod /\ A e. ( Base ` Z ) /\ ( F ` A ) e. ( Base ` ZZring ) ) -> ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) | 
						
							| 26 | 12 19 20 25 | syl3anc |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) | 
						
							| 27 | 9 26 | eqtrd |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) | 
						
							| 28 |  | eqid |  |-  { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 29 |  | eqid |  |-  ( -g ` Z ) = ( -g ` Z ) | 
						
							| 30 | 1 28 24 29 2 3 | zlmodzxznm |  |-  A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) | 
						
							| 31 |  | r19.26 |  |-  ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) <-> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) ) | 
						
							| 32 |  | oveq1 |  |-  ( i = ( F ` A ) -> ( i ( .s ` Z ) A ) = ( ( F ` A ) ( .s ` Z ) A ) ) | 
						
							| 33 | 32 | neeq1d |  |-  ( i = ( F ` A ) -> ( ( i ( .s ` Z ) A ) =/= B <-> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) | 
						
							| 34 | 33 | rspcv |  |-  ( ( F ` A ) e. ZZ -> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) | 
						
							| 35 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 36 | 35 | eqcomi |  |-  ( Base ` ZZring ) = ZZ | 
						
							| 37 | 36 | eleq2i |  |-  ( ( F ` A ) e. ( Base ` ZZring ) <-> ( F ` A ) e. ZZ ) | 
						
							| 38 | 37 | biimpi |  |-  ( ( F ` A ) e. ( Base ` ZZring ) -> ( F ` A ) e. ZZ ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ` A ) e. ZZ ) | 
						
							| 40 | 34 39 | syl11 |  |-  ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) | 
						
							| 41 | 40 | adantr |  |-  ( ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) | 
						
							| 42 | 31 41 | sylbi |  |-  ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) | 
						
							| 43 | 30 42 | ax-mp |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) | 
						
							| 44 | 27 43 | eqnetrd |  |-  ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) =/= B ) | 
						
							| 45 | 7 44 | sylbi |  |-  ( F : { A } --> ( Base ` ZZring ) -> ( F ( linC ` Z ) { A } ) =/= B ) | 
						
							| 46 | 4 45 | syl |  |-  ( F e. ( ( Base ` ZZring ) ^m { A } ) -> ( F ( linC ` Z ) { A } ) =/= B ) |