Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
4 |
|
elmapi |
|- ( F e. ( ( Base ` ZZring ) ^m { A } ) -> F : { A } --> ( Base ` ZZring ) ) |
5 |
|
prex |
|- { <. 0 , 3 >. , <. 1 , 6 >. } e. _V |
6 |
2 5
|
eqeltri |
|- A e. _V |
7 |
6
|
fsn2 |
|- ( F : { A } --> ( Base ` ZZring ) <-> ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) ) |
8 |
|
oveq1 |
|- ( F = { <. A , ( F ` A ) >. } -> ( F ( linC ` Z ) { A } ) = ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) ) |
9 |
8
|
adantl |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) = ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) ) |
10 |
1
|
zlmodzxzlmod |
|- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) |
11 |
10
|
simpli |
|- Z e. LMod |
12 |
11
|
a1i |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> Z e. LMod ) |
13 |
|
3z |
|- 3 e. ZZ |
14 |
|
6nn |
|- 6 e. NN |
15 |
14
|
nnzi |
|- 6 e. ZZ |
16 |
1
|
zlmodzxzel |
|- ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) |
17 |
13 15 16
|
mp2an |
|- { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) |
18 |
2 17
|
eqeltri |
|- A e. ( Base ` Z ) |
19 |
18
|
a1i |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> A e. ( Base ` Z ) ) |
20 |
|
simpl |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ` A ) e. ( Base ` ZZring ) ) |
21 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
22 |
10
|
simpri |
|- ZZring = ( Scalar ` Z ) |
23 |
|
eqid |
|- ( Base ` ZZring ) = ( Base ` ZZring ) |
24 |
|
eqid |
|- ( .s ` Z ) = ( .s ` Z ) |
25 |
21 22 23 24
|
lincvalsng |
|- ( ( Z e. LMod /\ A e. ( Base ` Z ) /\ ( F ` A ) e. ( Base ` ZZring ) ) -> ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) |
26 |
12 19 20 25
|
syl3anc |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( { <. A , ( F ` A ) >. } ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) |
27 |
9 26
|
eqtrd |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) = ( ( F ` A ) ( .s ` Z ) A ) ) |
28 |
|
eqid |
|- { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } |
29 |
|
eqid |
|- ( -g ` Z ) = ( -g ` Z ) |
30 |
1 28 24 29 2 3
|
zlmodzxznm |
|- A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) |
31 |
|
r19.26 |
|- ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) <-> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) ) |
32 |
|
oveq1 |
|- ( i = ( F ` A ) -> ( i ( .s ` Z ) A ) = ( ( F ` A ) ( .s ` Z ) A ) ) |
33 |
32
|
neeq1d |
|- ( i = ( F ` A ) -> ( ( i ( .s ` Z ) A ) =/= B <-> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) |
34 |
33
|
rspcv |
|- ( ( F ` A ) e. ZZ -> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) |
35 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
36 |
35
|
eqcomi |
|- ( Base ` ZZring ) = ZZ |
37 |
36
|
eleq2i |
|- ( ( F ` A ) e. ( Base ` ZZring ) <-> ( F ` A ) e. ZZ ) |
38 |
37
|
biimpi |
|- ( ( F ` A ) e. ( Base ` ZZring ) -> ( F ` A ) e. ZZ ) |
39 |
38
|
adantr |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ` A ) e. ZZ ) |
40 |
34 39
|
syl11 |
|- ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) |
41 |
40
|
adantr |
|- ( ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) |
42 |
31 41
|
sylbi |
|- ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) ) |
43 |
30 42
|
ax-mp |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( ( F ` A ) ( .s ` Z ) A ) =/= B ) |
44 |
27 43
|
eqnetrd |
|- ( ( ( F ` A ) e. ( Base ` ZZring ) /\ F = { <. A , ( F ` A ) >. } ) -> ( F ( linC ` Z ) { A } ) =/= B ) |
45 |
7 44
|
sylbi |
|- ( F : { A } --> ( Base ` ZZring ) -> ( F ( linC ` Z ) { A } ) =/= B ) |
46 |
4 45
|
syl |
|- ( F e. ( ( Base ` ZZring ) ^m { A } ) -> ( F ( linC ` Z ) { A } ) =/= B ) |