| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzequa.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzequa.o |  |-  .0. = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 3 |  | zlmodzxzequa.t |  |-  .xb = ( .s ` Z ) | 
						
							| 4 |  | zlmodzxzequa.m |  |-  .- = ( -g ` Z ) | 
						
							| 5 |  | zlmodzxzequa.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 6 |  | zlmodzxzequa.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 7 |  | 3prm |  |-  3 e. Prime | 
						
							| 8 |  | 2prm |  |-  2 e. Prime | 
						
							| 9 |  | ztprmneprm |  |-  ( ( i e. ZZ /\ 3 e. Prime /\ 2 e. Prime ) -> ( ( i x. 3 ) = 2 -> 3 = 2 ) ) | 
						
							| 10 | 7 8 9 | mp3an23 |  |-  ( i e. ZZ -> ( ( i x. 3 ) = 2 -> 3 = 2 ) ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 |  | 2lt3 |  |-  2 < 3 | 
						
							| 13 | 11 12 | ltneii |  |-  2 =/= 3 | 
						
							| 14 |  | eqneqall |  |-  ( 2 = 3 -> ( 2 =/= 3 -> ( i x. 3 ) =/= 2 ) ) | 
						
							| 15 | 13 14 | mpi |  |-  ( 2 = 3 -> ( i x. 3 ) =/= 2 ) | 
						
							| 16 | 15 | eqcoms |  |-  ( 3 = 2 -> ( i x. 3 ) =/= 2 ) | 
						
							| 17 | 10 16 | syl6com |  |-  ( ( i x. 3 ) = 2 -> ( i e. ZZ -> ( i x. 3 ) =/= 2 ) ) | 
						
							| 18 |  | ax-1 |  |-  ( ( i x. 3 ) =/= 2 -> ( i e. ZZ -> ( i x. 3 ) =/= 2 ) ) | 
						
							| 19 | 17 18 | pm2.61ine |  |-  ( i e. ZZ -> ( i x. 3 ) =/= 2 ) | 
						
							| 20 | 19 | olcd |  |-  ( i e. ZZ -> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) | 
						
							| 21 |  | c0ex |  |-  0 e. _V | 
						
							| 22 |  | ovex |  |-  ( i x. 3 ) e. _V | 
						
							| 23 | 21 22 | pm3.2i |  |-  ( 0 e. _V /\ ( i x. 3 ) e. _V ) | 
						
							| 24 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) ) | 
						
							| 25 | 23 24 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) ) | 
						
							| 26 | 20 25 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. ) | 
						
							| 27 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 28 | 27 | a1i |  |-  ( i e. ZZ -> 0 =/= 1 ) | 
						
							| 29 | 28 | orcd |  |-  ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) | 
						
							| 30 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) ) | 
						
							| 31 | 23 30 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) ) | 
						
							| 32 | 29 31 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) | 
						
							| 33 | 26 32 | jca |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) ) | 
						
							| 34 | 33 | orcd |  |-  ( i e. ZZ -> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) | 
						
							| 35 |  | opex |  |-  <. 0 , ( i x. 3 ) >. e. _V | 
						
							| 36 |  | opex |  |-  <. 1 , ( i x. 6 ) >. e. _V | 
						
							| 37 | 35 36 | pm3.2i |  |-  ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) | 
						
							| 38 | 37 | a1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) ) | 
						
							| 39 |  | opex |  |-  <. 0 , 2 >. e. _V | 
						
							| 40 |  | opex |  |-  <. 1 , 4 >. e. _V | 
						
							| 41 | 39 40 | pm3.2i |  |-  ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) | 
						
							| 42 | 41 | a1i |  |-  ( i e. ZZ -> ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) | 
						
							| 43 | 28 | orcd |  |-  ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) | 
						
							| 44 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) ) | 
						
							| 45 | 23 44 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) ) | 
						
							| 46 | 43 45 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) | 
						
							| 47 |  | prnebg |  |-  ( ( ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) -> ( ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) <-> { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) ) | 
						
							| 48 | 47 | bicomd |  |-  ( ( ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) -> ( { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } <-> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) ) | 
						
							| 49 | 38 42 46 48 | syl3anc |  |-  ( i e. ZZ -> ( { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } <-> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) ) | 
						
							| 50 | 34 49 | mpbird |  |-  ( i e. ZZ -> { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) | 
						
							| 51 | 5 | oveq2i |  |-  ( i .xb A ) = ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) | 
						
							| 52 |  | 3z |  |-  3 e. ZZ | 
						
							| 53 |  | 6nn |  |-  6 e. NN | 
						
							| 54 | 53 | nnzi |  |-  6 e. ZZ | 
						
							| 55 | 1 3 | zlmodzxzscm |  |-  ( ( i e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) -> ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) | 
						
							| 56 | 52 54 55 | mp3an23 |  |-  ( i e. ZZ -> ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) | 
						
							| 57 | 51 56 | eqtrid |  |-  ( i e. ZZ -> ( i .xb A ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) | 
						
							| 58 | 6 | a1i |  |-  ( i e. ZZ -> B = { <. 0 , 2 >. , <. 1 , 4 >. } ) | 
						
							| 59 | 50 57 58 | 3netr4d |  |-  ( i e. ZZ -> ( i .xb A ) =/= B ) | 
						
							| 60 |  | ztprmneprm |  |-  ( ( i e. ZZ /\ 2 e. Prime /\ 3 e. Prime ) -> ( ( i x. 2 ) = 3 -> 2 = 3 ) ) | 
						
							| 61 | 8 7 60 | mp3an23 |  |-  ( i e. ZZ -> ( ( i x. 2 ) = 3 -> 2 = 3 ) ) | 
						
							| 62 |  | eqneqall |  |-  ( 2 = 3 -> ( 2 =/= 3 -> ( i x. 2 ) =/= 3 ) ) | 
						
							| 63 | 13 62 | mpi |  |-  ( 2 = 3 -> ( i x. 2 ) =/= 3 ) | 
						
							| 64 | 61 63 | syl6com |  |-  ( ( i x. 2 ) = 3 -> ( i e. ZZ -> ( i x. 2 ) =/= 3 ) ) | 
						
							| 65 |  | ax-1 |  |-  ( ( i x. 2 ) =/= 3 -> ( i e. ZZ -> ( i x. 2 ) =/= 3 ) ) | 
						
							| 66 | 64 65 | pm2.61ine |  |-  ( i e. ZZ -> ( i x. 2 ) =/= 3 ) | 
						
							| 67 | 66 | olcd |  |-  ( i e. ZZ -> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) | 
						
							| 68 |  | ovex |  |-  ( i x. 2 ) e. _V | 
						
							| 69 | 21 68 | pm3.2i |  |-  ( 0 e. _V /\ ( i x. 2 ) e. _V ) | 
						
							| 70 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. <-> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) ) | 
						
							| 71 | 69 70 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. <-> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) ) | 
						
							| 72 | 67 71 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. ) | 
						
							| 73 | 28 | orcd |  |-  ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) | 
						
							| 74 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) ) | 
						
							| 75 | 69 74 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) ) | 
						
							| 76 | 73 75 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) | 
						
							| 77 | 72 76 | jca |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) ) | 
						
							| 78 | 77 | orcd |  |-  ( i e. ZZ -> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) | 
						
							| 79 |  | opex |  |-  <. 0 , ( i x. 2 ) >. e. _V | 
						
							| 80 |  | opex |  |-  <. 1 , ( i x. 4 ) >. e. _V | 
						
							| 81 | 79 80 | pm3.2i |  |-  ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) | 
						
							| 82 | 81 | a1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) ) | 
						
							| 83 |  | opex |  |-  <. 0 , 3 >. e. _V | 
						
							| 84 |  | opex |  |-  <. 1 , 6 >. e. _V | 
						
							| 85 | 83 84 | pm3.2i |  |-  ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) | 
						
							| 86 | 85 | a1i |  |-  ( i e. ZZ -> ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) ) | 
						
							| 87 | 28 | orcd |  |-  ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) | 
						
							| 88 |  | opthneg |  |-  ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) ) | 
						
							| 89 | 69 88 | mp1i |  |-  ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) ) | 
						
							| 90 | 87 89 | mpbird |  |-  ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) | 
						
							| 91 |  | prnebg |  |-  ( ( ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) /\ ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) -> ( ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) <-> { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } ) ) | 
						
							| 92 | 91 | bicomd |  |-  ( ( ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) /\ ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) -> ( { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } <-> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) ) | 
						
							| 93 | 82 86 90 92 | syl3anc |  |-  ( i e. ZZ -> ( { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } <-> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) ) | 
						
							| 94 | 78 93 | mpbird |  |-  ( i e. ZZ -> { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } ) | 
						
							| 95 | 6 | oveq2i |  |-  ( i .xb B ) = ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) | 
						
							| 96 |  | 2z |  |-  2 e. ZZ | 
						
							| 97 |  | 4z |  |-  4 e. ZZ | 
						
							| 98 | 1 3 | zlmodzxzscm |  |-  ( ( i e. ZZ /\ 2 e. ZZ /\ 4 e. ZZ ) -> ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) | 
						
							| 99 | 96 97 98 | mp3an23 |  |-  ( i e. ZZ -> ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) | 
						
							| 100 | 95 99 | eqtrid |  |-  ( i e. ZZ -> ( i .xb B ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) | 
						
							| 101 | 5 | a1i |  |-  ( i e. ZZ -> A = { <. 0 , 3 >. , <. 1 , 6 >. } ) | 
						
							| 102 | 94 100 101 | 3netr4d |  |-  ( i e. ZZ -> ( i .xb B ) =/= A ) | 
						
							| 103 | 59 102 | jca |  |-  ( i e. ZZ -> ( ( i .xb A ) =/= B /\ ( i .xb B ) =/= A ) ) | 
						
							| 104 | 103 | rgen |  |-  A. i e. ZZ ( ( i .xb A ) =/= B /\ ( i .xb B ) =/= A ) |