| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmodzxzequa.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
| 2 |
|
zlmodzxzequa.o |
|- .0. = { <. 0 , 0 >. , <. 1 , 0 >. } |
| 3 |
|
zlmodzxzequa.t |
|- .xb = ( .s ` Z ) |
| 4 |
|
zlmodzxzequa.m |
|- .- = ( -g ` Z ) |
| 5 |
|
zlmodzxzequa.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
| 6 |
|
zlmodzxzequa.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
| 7 |
|
3prm |
|- 3 e. Prime |
| 8 |
|
2prm |
|- 2 e. Prime |
| 9 |
|
ztprmneprm |
|- ( ( i e. ZZ /\ 3 e. Prime /\ 2 e. Prime ) -> ( ( i x. 3 ) = 2 -> 3 = 2 ) ) |
| 10 |
7 8 9
|
mp3an23 |
|- ( i e. ZZ -> ( ( i x. 3 ) = 2 -> 3 = 2 ) ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
|
2lt3 |
|- 2 < 3 |
| 13 |
11 12
|
ltneii |
|- 2 =/= 3 |
| 14 |
|
eqneqall |
|- ( 2 = 3 -> ( 2 =/= 3 -> ( i x. 3 ) =/= 2 ) ) |
| 15 |
13 14
|
mpi |
|- ( 2 = 3 -> ( i x. 3 ) =/= 2 ) |
| 16 |
15
|
eqcoms |
|- ( 3 = 2 -> ( i x. 3 ) =/= 2 ) |
| 17 |
10 16
|
syl6com |
|- ( ( i x. 3 ) = 2 -> ( i e. ZZ -> ( i x. 3 ) =/= 2 ) ) |
| 18 |
|
ax-1 |
|- ( ( i x. 3 ) =/= 2 -> ( i e. ZZ -> ( i x. 3 ) =/= 2 ) ) |
| 19 |
17 18
|
pm2.61ine |
|- ( i e. ZZ -> ( i x. 3 ) =/= 2 ) |
| 20 |
19
|
olcd |
|- ( i e. ZZ -> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) |
| 21 |
|
c0ex |
|- 0 e. _V |
| 22 |
|
ovex |
|- ( i x. 3 ) e. _V |
| 23 |
21 22
|
pm3.2i |
|- ( 0 e. _V /\ ( i x. 3 ) e. _V ) |
| 24 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) ) |
| 25 |
23 24
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. <-> ( 0 =/= 0 \/ ( i x. 3 ) =/= 2 ) ) ) |
| 26 |
20 25
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. ) |
| 27 |
|
0ne1 |
|- 0 =/= 1 |
| 28 |
27
|
a1i |
|- ( i e. ZZ -> 0 =/= 1 ) |
| 29 |
28
|
orcd |
|- ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) |
| 30 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) ) |
| 31 |
23 30
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= 4 ) ) ) |
| 32 |
29 31
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) |
| 33 |
26 32
|
jca |
|- ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) ) |
| 34 |
33
|
orcd |
|- ( i e. ZZ -> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) |
| 35 |
|
opex |
|- <. 0 , ( i x. 3 ) >. e. _V |
| 36 |
|
opex |
|- <. 1 , ( i x. 6 ) >. e. _V |
| 37 |
35 36
|
pm3.2i |
|- ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) |
| 38 |
37
|
a1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) ) |
| 39 |
|
opex |
|- <. 0 , 2 >. e. _V |
| 40 |
|
opex |
|- <. 1 , 4 >. e. _V |
| 41 |
39 40
|
pm3.2i |
|- ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) |
| 42 |
41
|
a1i |
|- ( i e. ZZ -> ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) ) |
| 43 |
28
|
orcd |
|- ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) |
| 44 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 3 ) e. _V ) -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) ) |
| 45 |
23 44
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. <-> ( 0 =/= 1 \/ ( i x. 3 ) =/= ( i x. 6 ) ) ) ) |
| 46 |
43 45
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) |
| 47 |
|
prnebg |
|- ( ( ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) -> ( ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) <-> { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) ) |
| 48 |
47
|
bicomd |
|- ( ( ( <. 0 , ( i x. 3 ) >. e. _V /\ <. 1 , ( i x. 6 ) >. e. _V ) /\ ( <. 0 , 2 >. e. _V /\ <. 1 , 4 >. e. _V ) /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , ( i x. 6 ) >. ) -> ( { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } <-> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) ) |
| 49 |
38 42 46 48
|
syl3anc |
|- ( i e. ZZ -> ( { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } <-> ( ( <. 0 , ( i x. 3 ) >. =/= <. 0 , 2 >. /\ <. 0 , ( i x. 3 ) >. =/= <. 1 , 4 >. ) \/ ( <. 1 , ( i x. 6 ) >. =/= <. 0 , 2 >. /\ <. 1 , ( i x. 6 ) >. =/= <. 1 , 4 >. ) ) ) ) |
| 50 |
34 49
|
mpbird |
|- ( i e. ZZ -> { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } =/= { <. 0 , 2 >. , <. 1 , 4 >. } ) |
| 51 |
5
|
oveq2i |
|- ( i .xb A ) = ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) |
| 52 |
|
3z |
|- 3 e. ZZ |
| 53 |
|
6nn |
|- 6 e. NN |
| 54 |
53
|
nnzi |
|- 6 e. ZZ |
| 55 |
1 3
|
zlmodzxzscm |
|- ( ( i e. ZZ /\ 3 e. ZZ /\ 6 e. ZZ ) -> ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) |
| 56 |
52 54 55
|
mp3an23 |
|- ( i e. ZZ -> ( i .xb { <. 0 , 3 >. , <. 1 , 6 >. } ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) |
| 57 |
51 56
|
eqtrid |
|- ( i e. ZZ -> ( i .xb A ) = { <. 0 , ( i x. 3 ) >. , <. 1 , ( i x. 6 ) >. } ) |
| 58 |
6
|
a1i |
|- ( i e. ZZ -> B = { <. 0 , 2 >. , <. 1 , 4 >. } ) |
| 59 |
50 57 58
|
3netr4d |
|- ( i e. ZZ -> ( i .xb A ) =/= B ) |
| 60 |
|
ztprmneprm |
|- ( ( i e. ZZ /\ 2 e. Prime /\ 3 e. Prime ) -> ( ( i x. 2 ) = 3 -> 2 = 3 ) ) |
| 61 |
8 7 60
|
mp3an23 |
|- ( i e. ZZ -> ( ( i x. 2 ) = 3 -> 2 = 3 ) ) |
| 62 |
|
eqneqall |
|- ( 2 = 3 -> ( 2 =/= 3 -> ( i x. 2 ) =/= 3 ) ) |
| 63 |
13 62
|
mpi |
|- ( 2 = 3 -> ( i x. 2 ) =/= 3 ) |
| 64 |
61 63
|
syl6com |
|- ( ( i x. 2 ) = 3 -> ( i e. ZZ -> ( i x. 2 ) =/= 3 ) ) |
| 65 |
|
ax-1 |
|- ( ( i x. 2 ) =/= 3 -> ( i e. ZZ -> ( i x. 2 ) =/= 3 ) ) |
| 66 |
64 65
|
pm2.61ine |
|- ( i e. ZZ -> ( i x. 2 ) =/= 3 ) |
| 67 |
66
|
olcd |
|- ( i e. ZZ -> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) |
| 68 |
|
ovex |
|- ( i x. 2 ) e. _V |
| 69 |
21 68
|
pm3.2i |
|- ( 0 e. _V /\ ( i x. 2 ) e. _V ) |
| 70 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. <-> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) ) |
| 71 |
69 70
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. <-> ( 0 =/= 0 \/ ( i x. 2 ) =/= 3 ) ) ) |
| 72 |
67 71
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. ) |
| 73 |
28
|
orcd |
|- ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) |
| 74 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) ) |
| 75 |
69 74
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= 6 ) ) ) |
| 76 |
73 75
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) |
| 77 |
72 76
|
jca |
|- ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) ) |
| 78 |
77
|
orcd |
|- ( i e. ZZ -> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) |
| 79 |
|
opex |
|- <. 0 , ( i x. 2 ) >. e. _V |
| 80 |
|
opex |
|- <. 1 , ( i x. 4 ) >. e. _V |
| 81 |
79 80
|
pm3.2i |
|- ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) |
| 82 |
81
|
a1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) ) |
| 83 |
|
opex |
|- <. 0 , 3 >. e. _V |
| 84 |
|
opex |
|- <. 1 , 6 >. e. _V |
| 85 |
83 84
|
pm3.2i |
|- ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) |
| 86 |
85
|
a1i |
|- ( i e. ZZ -> ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) ) |
| 87 |
28
|
orcd |
|- ( i e. ZZ -> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) |
| 88 |
|
opthneg |
|- ( ( 0 e. _V /\ ( i x. 2 ) e. _V ) -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) ) |
| 89 |
69 88
|
mp1i |
|- ( i e. ZZ -> ( <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. <-> ( 0 =/= 1 \/ ( i x. 2 ) =/= ( i x. 4 ) ) ) ) |
| 90 |
87 89
|
mpbird |
|- ( i e. ZZ -> <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) |
| 91 |
|
prnebg |
|- ( ( ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) /\ ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) -> ( ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) <-> { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } ) ) |
| 92 |
91
|
bicomd |
|- ( ( ( <. 0 , ( i x. 2 ) >. e. _V /\ <. 1 , ( i x. 4 ) >. e. _V ) /\ ( <. 0 , 3 >. e. _V /\ <. 1 , 6 >. e. _V ) /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , ( i x. 4 ) >. ) -> ( { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } <-> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) ) |
| 93 |
82 86 90 92
|
syl3anc |
|- ( i e. ZZ -> ( { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } <-> ( ( <. 0 , ( i x. 2 ) >. =/= <. 0 , 3 >. /\ <. 0 , ( i x. 2 ) >. =/= <. 1 , 6 >. ) \/ ( <. 1 , ( i x. 4 ) >. =/= <. 0 , 3 >. /\ <. 1 , ( i x. 4 ) >. =/= <. 1 , 6 >. ) ) ) ) |
| 94 |
78 93
|
mpbird |
|- ( i e. ZZ -> { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } =/= { <. 0 , 3 >. , <. 1 , 6 >. } ) |
| 95 |
6
|
oveq2i |
|- ( i .xb B ) = ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) |
| 96 |
|
2z |
|- 2 e. ZZ |
| 97 |
|
4z |
|- 4 e. ZZ |
| 98 |
1 3
|
zlmodzxzscm |
|- ( ( i e. ZZ /\ 2 e. ZZ /\ 4 e. ZZ ) -> ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) |
| 99 |
96 97 98
|
mp3an23 |
|- ( i e. ZZ -> ( i .xb { <. 0 , 2 >. , <. 1 , 4 >. } ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) |
| 100 |
95 99
|
eqtrid |
|- ( i e. ZZ -> ( i .xb B ) = { <. 0 , ( i x. 2 ) >. , <. 1 , ( i x. 4 ) >. } ) |
| 101 |
5
|
a1i |
|- ( i e. ZZ -> A = { <. 0 , 3 >. , <. 1 , 6 >. } ) |
| 102 |
94 100 101
|
3netr4d |
|- ( i e. ZZ -> ( i .xb B ) =/= A ) |
| 103 |
59 102
|
jca |
|- ( i e. ZZ -> ( ( i .xb A ) =/= B /\ ( i .xb B ) =/= A ) ) |
| 104 |
103
|
rgen |
|- A. i e. ZZ ( ( i .xb A ) =/= B /\ ( i .xb B ) =/= A ) |