Metamath Proof Explorer


Theorem islindeps2

Description: Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps2.b B = Base M
islindeps2.z Z = 0 M
islindeps2.r R = Scalar M
islindeps2.e E = Base R
islindeps2.0 0 ˙ = 0 R
Assertion islindeps2 M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M

Proof

Step Hyp Ref Expression
1 islindeps2.b B = Base M
2 islindeps2.z Z = 0 M
3 islindeps2.r R = Scalar M
4 islindeps2.e E = Base R
5 islindeps2.0 0 ˙ = 0 R
6 id M LMod S 𝒫 B M LMod S 𝒫 B
7 6 3adant3 M LMod S 𝒫 B R NzRing M LMod S 𝒫 B
8 7 ad3antrrr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s M LMod S 𝒫 B
9 nzrring R NzRing R Ring
10 eqid 1 R = 1 R
11 4 10 ringidcl R Ring 1 R E
12 9 11 syl R NzRing 1 R E
13 12 3ad2ant3 M LMod S 𝒫 B R NzRing 1 R E
14 13 ad3antrrr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s 1 R E
15 simpllr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s s S
16 simplr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s f E S s
17 14 15 16 3jca M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s 1 R E s S f E S s
18 simprl M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ f
19 eqid inv g R = inv g R
20 eqid z S if z = s inv g R 1 R f z = z S if z = s inv g R 1 R f z
21 1 3 4 5 2 19 20 lincext2 M LMod S 𝒫 B 1 R E s S f E S s finSupp 0 ˙ f finSupp 0 ˙ z S if z = s inv g R 1 R f z
22 8 17 18 21 syl3anc M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ z S if z = s inv g R 1 R f z
23 simpl1 M LMod S 𝒫 B R NzRing s S M LMod
24 elelpwi s S S 𝒫 B s B
25 24 expcom S 𝒫 B s S s B
26 25 3ad2ant2 M LMod S 𝒫 B R NzRing s S s B
27 26 imp M LMod S 𝒫 B R NzRing s S s B
28 eqid M = M
29 1 3 28 10 lmodvs1 M LMod s B 1 R M s = s
30 23 27 29 syl2anc M LMod S 𝒫 B R NzRing s S 1 R M s = s
31 30 adantr M LMod S 𝒫 B R NzRing s S f E S s 1 R M s = s
32 id f linC M S s = s f linC M S s = s
33 32 eqcomd f linC M S s = s s = f linC M S s
34 33 adantl finSupp 0 ˙ f f linC M S s = s s = f linC M S s
35 31 34 sylan9eq M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s 1 R M s = f linC M S s
36 1 3 4 5 2 19 20 lincext3 M LMod S 𝒫 B 1 R E s S f E S s finSupp 0 ˙ f 1 R M s = f linC M S s z S if z = s inv g R 1 R f z linC M S = Z
37 8 17 18 35 36 syl112anc M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s z S if z = s inv g R 1 R f z linC M S = Z
38 22 37 jca M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ z S if z = s inv g R 1 R f z z S if z = s inv g R 1 R f z linC M S = Z
39 eqidd M LMod S 𝒫 B R NzRing s S z S if z = s inv g R 1 R f z = z S if z = s inv g R 1 R f z
40 iftrue z = s if z = s inv g R 1 R f z = inv g R 1 R
41 40 adantl M LMod S 𝒫 B R NzRing s S z = s if z = s inv g R 1 R f z = inv g R 1 R
42 simpr M LMod S 𝒫 B R NzRing s S s S
43 fvexd M LMod S 𝒫 B R NzRing s S inv g R 1 R V
44 39 41 42 43 fvmptd M LMod S 𝒫 B R NzRing s S z S if z = s inv g R 1 R f z s = inv g R 1 R
45 nzrneg1ne0 R NzRing inv g R 1 R 0 R
46 5 a1i R NzRing 0 ˙ = 0 R
47 45 46 neeqtrrd R NzRing inv g R 1 R 0 ˙
48 47 3ad2ant3 M LMod S 𝒫 B R NzRing inv g R 1 R 0 ˙
49 48 adantr M LMod S 𝒫 B R NzRing s S inv g R 1 R 0 ˙
50 44 49 eqnetrd M LMod S 𝒫 B R NzRing s S z S if z = s inv g R 1 R f z s 0 ˙
51 50 adantr M LMod S 𝒫 B R NzRing s S f E S s z S if z = s inv g R 1 R f z s 0 ˙
52 51 adantr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s z S if z = s inv g R 1 R f z s 0 ˙
53 1 3 4 5 2 19 20 lincext1 M LMod S 𝒫 B 1 R E s S f E S s z S if z = s inv g R 1 R f z E S
54 8 17 53 syl2anc M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s z S if z = s inv g R 1 R f z E S
55 breq1 g = z S if z = s inv g R 1 R f z finSupp 0 ˙ g finSupp 0 ˙ z S if z = s inv g R 1 R f z
56 oveq1 g = z S if z = s inv g R 1 R f z g linC M S = z S if z = s inv g R 1 R f z linC M S
57 56 eqeq1d g = z S if z = s inv g R 1 R f z g linC M S = Z z S if z = s inv g R 1 R f z linC M S = Z
58 55 57 anbi12d g = z S if z = s inv g R 1 R f z finSupp 0 ˙ g g linC M S = Z finSupp 0 ˙ z S if z = s inv g R 1 R f z z S if z = s inv g R 1 R f z linC M S = Z
59 fveq1 g = z S if z = s inv g R 1 R f z g s = z S if z = s inv g R 1 R f z s
60 59 neeq1d g = z S if z = s inv g R 1 R f z g s 0 ˙ z S if z = s inv g R 1 R f z s 0 ˙
61 58 60 anbi12d g = z S if z = s inv g R 1 R f z finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ z S if z = s inv g R 1 R f z z S if z = s inv g R 1 R f z linC M S = Z z S if z = s inv g R 1 R f z s 0 ˙
62 61 adantl M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s g = z S if z = s inv g R 1 R f z finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ z S if z = s inv g R 1 R f z z S if z = s inv g R 1 R f z linC M S = Z z S if z = s inv g R 1 R f z s 0 ˙
63 54 62 rspcedv M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s finSupp 0 ˙ z S if z = s inv g R 1 R f z z S if z = s inv g R 1 R f z linC M S = Z z S if z = s inv g R 1 R f z s 0 ˙ g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
64 38 52 63 mp2and M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
65 64 rexlimdva2 M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
66 65 reximdva M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
67 66 imp M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
68 df-3an finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
69 r19.42v s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
70 68 69 bitr4i finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
71 70 rexbii g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ g E S s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
72 rexcom g E S s S finSupp 0 ˙ g g linC M S = Z g s 0 ˙ s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
73 71 72 bitri g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙ s S g E S finSupp 0 ˙ g g linC M S = Z g s 0 ˙
74 67 73 sylibr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
75 1 2 3 4 5 islindeps M LMod S 𝒫 B S linDepS M g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
76 75 3adant3 M LMod S 𝒫 B R NzRing S linDepS M g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
77 76 adantr M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M g E S finSupp 0 ˙ g g linC M S = Z s S g s 0 ˙
78 74 77 mpbird M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M
79 78 ex M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M