Metamath Proof Explorer


Theorem islininds2

Description: Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps2.b B = Base M
islindeps2.z Z = 0 M
islindeps2.r R = Scalar M
islindeps2.e E = Base R
islindeps2.0 0 ˙ = 0 R
Assertion islininds2 M LMod S 𝒫 B R NzRing S linIndS M s S f E S s ¬ finSupp 0 ˙ f f linC M S s s

Proof

Step Hyp Ref Expression
1 islindeps2.b B = Base M
2 islindeps2.z Z = 0 M
3 islindeps2.r R = Scalar M
4 islindeps2.e E = Base R
5 islindeps2.0 0 ˙ = 0 R
6 lindepsnlininds S 𝒫 B M LMod S linDepS M ¬ S linIndS M
7 6 ancoms M LMod S 𝒫 B S linDepS M ¬ S linIndS M
8 7 3adant3 M LMod S 𝒫 B R NzRing S linDepS M ¬ S linIndS M
9 8 con2bid M LMod S 𝒫 B R NzRing S linIndS M ¬ S linDepS M
10 notnotb finSupp 0 ˙ f ¬ ¬ finSupp 0 ˙ f
11 nne ¬ f linC M S s s f linC M S s = s
12 11 bicomi f linC M S s = s ¬ f linC M S s s
13 10 12 anbi12i finSupp 0 ˙ f f linC M S s = s ¬ ¬ finSupp 0 ˙ f ¬ f linC M S s s
14 pm4.56 ¬ ¬ finSupp 0 ˙ f ¬ f linC M S s s ¬ ¬ finSupp 0 ˙ f f linC M S s s
15 13 14 bitri finSupp 0 ˙ f f linC M S s = s ¬ ¬ finSupp 0 ˙ f f linC M S s s
16 15 rexbii f E S s finSupp 0 ˙ f f linC M S s = s f E S s ¬ ¬ finSupp 0 ˙ f f linC M S s s
17 rexnal f E S s ¬ ¬ finSupp 0 ˙ f f linC M S s s ¬ f E S s ¬ finSupp 0 ˙ f f linC M S s s
18 16 17 bitri f E S s finSupp 0 ˙ f f linC M S s = s ¬ f E S s ¬ finSupp 0 ˙ f f linC M S s s
19 18 rexbii s S f E S s finSupp 0 ˙ f f linC M S s = s s S ¬ f E S s ¬ finSupp 0 ˙ f f linC M S s s
20 rexnal s S ¬ f E S s ¬ finSupp 0 ˙ f f linC M S s s ¬ s S f E S s ¬ finSupp 0 ˙ f f linC M S s s
21 19 20 bitri s S f E S s finSupp 0 ˙ f f linC M S s = s ¬ s S f E S s ¬ finSupp 0 ˙ f f linC M S s s
22 1 2 3 4 5 islindeps2 M LMod S 𝒫 B R NzRing s S f E S s finSupp 0 ˙ f f linC M S s = s S linDepS M
23 21 22 syl5bir M LMod S 𝒫 B R NzRing ¬ s S f E S s ¬ finSupp 0 ˙ f f linC M S s s S linDepS M
24 23 con1d M LMod S 𝒫 B R NzRing ¬ S linDepS M s S f E S s ¬ finSupp 0 ˙ f f linC M S s s
25 9 24 sylbid M LMod S 𝒫 B R NzRing S linIndS M s S f E S s ¬ finSupp 0 ˙ f f linC M S s s