Description: Lemma 1 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zlmodzxzldep.z | |
|
zlmodzxzldep.a | |
||
zlmodzxzldep.b | |
||
Assertion | ldepsnlinclem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmodzxzldep.z | |
|
2 | zlmodzxzldep.a | |
|
3 | zlmodzxzldep.b | |
|
4 | elmapi | |
|
5 | prex | |
|
6 | 3 5 | eqeltri | |
7 | 6 | fsn2 | |
8 | oveq1 | |
|
9 | 8 | adantl | |
10 | 1 | zlmodzxzlmod | |
11 | 10 | simpli | |
12 | 11 | a1i | |
13 | 2z | |
|
14 | 4z | |
|
15 | 1 | zlmodzxzel | |
16 | 13 14 15 | mp2an | |
17 | 3 16 | eqeltri | |
18 | 17 | a1i | |
19 | simpl | |
|
20 | eqid | |
|
21 | 10 | simpri | |
22 | eqid | |
|
23 | eqid | |
|
24 | 20 21 22 23 | lincvalsng | |
25 | 12 18 19 24 | syl3anc | |
26 | 9 25 | eqtrd | |
27 | eqid | |
|
28 | eqid | |
|
29 | 1 27 23 28 2 3 | zlmodzxznm | |
30 | r19.26 | |
|
31 | oveq1 | |
|
32 | 31 | neeq1d | |
33 | 32 | rspcv | |
34 | zringbas | |
|
35 | 34 | eqcomi | |
36 | 35 | eleq2i | |
37 | 36 | biimpi | |
38 | 37 | adantr | |
39 | 33 38 | syl11 | |
40 | 39 | adantl | |
41 | 30 40 | sylbi | |
42 | 29 41 | ax-mp | |
43 | 26 42 | eqnetrd | |
44 | 7 43 | sylbi | |
45 | 4 44 | syl | |