Metamath Proof Explorer


Theorem ldepsnlinclem1

Description: Lemma 1 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
Assertion ldepsnlinclem1 F Base ring B F linC Z B A

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 elmapi F Base ring B F : B Base ring
5 prex 0 2 1 4 V
6 3 5 eqeltri B V
7 6 fsn2 F : B Base ring F B Base ring F = B F B
8 oveq1 F = B F B F linC Z B = B F B linC Z B
9 8 adantl F B Base ring F = B F B F linC Z B = B F B linC Z B
10 1 zlmodzxzlmod Z LMod ring = Scalar Z
11 10 simpli Z LMod
12 11 a1i F B Base ring F = B F B Z LMod
13 2z 2
14 4z 4
15 1 zlmodzxzel 2 4 0 2 1 4 Base Z
16 13 14 15 mp2an 0 2 1 4 Base Z
17 3 16 eqeltri B Base Z
18 17 a1i F B Base ring F = B F B B Base Z
19 simpl F B Base ring F = B F B F B Base ring
20 eqid Base Z = Base Z
21 10 simpri ring = Scalar Z
22 eqid Base ring = Base ring
23 eqid Z = Z
24 20 21 22 23 lincvalsng Z LMod B Base Z F B Base ring B F B linC Z B = F B Z B
25 12 18 19 24 syl3anc F B Base ring F = B F B B F B linC Z B = F B Z B
26 9 25 eqtrd F B Base ring F = B F B F linC Z B = F B Z B
27 eqid 0 0 1 0 = 0 0 1 0
28 eqid - Z = - Z
29 1 27 23 28 2 3 zlmodzxznm i i Z A B i Z B A
30 r19.26 i i Z A B i Z B A i i Z A B i i Z B A
31 oveq1 i = F B i Z B = F B Z B
32 31 neeq1d i = F B i Z B A F B Z B A
33 32 rspcv F B i i Z B A F B Z B A
34 zringbas = Base ring
35 34 eqcomi Base ring =
36 35 eleq2i F B Base ring F B
37 36 biimpi F B Base ring F B
38 37 adantr F B Base ring F = B F B F B
39 33 38 syl11 i i Z B A F B Base ring F = B F B F B Z B A
40 39 adantl i i Z A B i i Z B A F B Base ring F = B F B F B Z B A
41 30 40 sylbi i i Z A B i Z B A F B Base ring F = B F B F B Z B A
42 29 41 ax-mp F B Base ring F = B F B F B Z B A
43 26 42 eqnetrd F B Base ring F = B F B F linC Z B A
44 7 43 sylbi F : B Base ring F linC Z B A
45 4 44 syl F Base ring B F linC Z B A