Metamath Proof Explorer


Theorem ldepsnlinclem1

Description: Lemma 1 for ldepsnlinc . (Contributed by AV, 25-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z=ringfreeLMod01
zlmodzxzldep.a A=0316
zlmodzxzldep.b B=0214
Assertion ldepsnlinclem1 FBaseringBFlinCZBA

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z=ringfreeLMod01
2 zlmodzxzldep.a A=0316
3 zlmodzxzldep.b B=0214
4 elmapi FBaseringBF:BBasering
5 prex 0214V
6 3 5 eqeltri BV
7 6 fsn2 F:BBaseringFBBaseringF=BFB
8 oveq1 F=BFBFlinCZB=BFBlinCZB
9 8 adantl FBBaseringF=BFBFlinCZB=BFBlinCZB
10 1 zlmodzxzlmod ZLModring=ScalarZ
11 10 simpli ZLMod
12 11 a1i FBBaseringF=BFBZLMod
13 2z 2
14 4z 4
15 1 zlmodzxzel 240214BaseZ
16 13 14 15 mp2an 0214BaseZ
17 3 16 eqeltri BBaseZ
18 17 a1i FBBaseringF=BFBBBaseZ
19 simpl FBBaseringF=BFBFBBasering
20 eqid BaseZ=BaseZ
21 10 simpri ring=ScalarZ
22 eqid Basering=Basering
23 eqid Z=Z
24 20 21 22 23 lincvalsng ZLModBBaseZFBBaseringBFBlinCZB=FBZB
25 12 18 19 24 syl3anc FBBaseringF=BFBBFBlinCZB=FBZB
26 9 25 eqtrd FBBaseringF=BFBFlinCZB=FBZB
27 eqid 0010=0010
28 eqid -Z=-Z
29 1 27 23 28 2 3 zlmodzxznm iiZABiZBA
30 r19.26 iiZABiZBAiiZABiiZBA
31 oveq1 i=FBiZB=FBZB
32 31 neeq1d i=FBiZBAFBZBA
33 32 rspcv FBiiZBAFBZBA
34 zringbas =Basering
35 34 eqcomi Basering=
36 35 eleq2i FBBaseringFB
37 36 biimpi FBBaseringFB
38 37 adantr FBBaseringF=BFBFB
39 33 38 syl11 iiZBAFBBaseringF=BFBFBZBA
40 39 adantl iiZABiiZBAFBBaseringF=BFBFBZBA
41 30 40 sylbi iiZABiZBAFBBaseringF=BFBFBZBA
42 29 41 ax-mp FBBaseringF=BFBFBZBA
43 26 42 eqnetrd FBBaseringF=BFBFlinCZBA
44 7 43 sylbi F:BBaseringFlinCZBA
45 4 44 syl FBaseringBFlinCZBA