Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|
2 |
|
zlmodzxzldep.a |
|
3 |
|
zlmodzxzldep.b |
|
4 |
|
elmapi |
|
5 |
|
prex |
|
6 |
3 5
|
eqeltri |
|
7 |
6
|
fsn2 |
|
8 |
|
oveq1 |
|
9 |
8
|
adantl |
|
10 |
1
|
zlmodzxzlmod |
|
11 |
10
|
simpli |
|
12 |
11
|
a1i |
|
13 |
|
2z |
|
14 |
|
4z |
|
15 |
1
|
zlmodzxzel |
|
16 |
13 14 15
|
mp2an |
|
17 |
3 16
|
eqeltri |
|
18 |
17
|
a1i |
|
19 |
|
simpl |
|
20 |
|
eqid |
|
21 |
10
|
simpri |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
20 21 22 23
|
lincvalsng |
|
25 |
12 18 19 24
|
syl3anc |
|
26 |
9 25
|
eqtrd |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
1 27 23 28 2 3
|
zlmodzxznm |
|
30 |
|
r19.26 |
|
31 |
|
oveq1 |
|
32 |
31
|
neeq1d |
|
33 |
32
|
rspcv |
|
34 |
|
zringbas |
|
35 |
34
|
eqcomi |
|
36 |
35
|
eleq2i |
|
37 |
36
|
biimpi |
|
38 |
37
|
adantr |
|
39 |
33 38
|
syl11 |
|
40 |
39
|
adantl |
|
41 |
30 40
|
sylbi |
|
42 |
29 41
|
ax-mp |
|
43 |
26 42
|
eqnetrd |
|
44 |
7 43
|
sylbi |
|
45 |
4 44
|
syl |
|