Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
4 |
|
elmapi |
|- ( F e. ( ( Base ` ZZring ) ^m { B } ) -> F : { B } --> ( Base ` ZZring ) ) |
5 |
|
prex |
|- { <. 0 , 2 >. , <. 1 , 4 >. } e. _V |
6 |
3 5
|
eqeltri |
|- B e. _V |
7 |
6
|
fsn2 |
|- ( F : { B } --> ( Base ` ZZring ) <-> ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) ) |
8 |
|
oveq1 |
|- ( F = { <. B , ( F ` B ) >. } -> ( F ( linC ` Z ) { B } ) = ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) ) |
9 |
8
|
adantl |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) = ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) ) |
10 |
1
|
zlmodzxzlmod |
|- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) |
11 |
10
|
simpli |
|- Z e. LMod |
12 |
11
|
a1i |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> Z e. LMod ) |
13 |
|
2z |
|- 2 e. ZZ |
14 |
|
4z |
|- 4 e. ZZ |
15 |
1
|
zlmodzxzel |
|- ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) |
16 |
13 14 15
|
mp2an |
|- { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) |
17 |
3 16
|
eqeltri |
|- B e. ( Base ` Z ) |
18 |
17
|
a1i |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> B e. ( Base ` Z ) ) |
19 |
|
simpl |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ` B ) e. ( Base ` ZZring ) ) |
20 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
21 |
10
|
simpri |
|- ZZring = ( Scalar ` Z ) |
22 |
|
eqid |
|- ( Base ` ZZring ) = ( Base ` ZZring ) |
23 |
|
eqid |
|- ( .s ` Z ) = ( .s ` Z ) |
24 |
20 21 22 23
|
lincvalsng |
|- ( ( Z e. LMod /\ B e. ( Base ` Z ) /\ ( F ` B ) e. ( Base ` ZZring ) ) -> ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) |
25 |
12 18 19 24
|
syl3anc |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) |
26 |
9 25
|
eqtrd |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) |
27 |
|
eqid |
|- { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } |
28 |
|
eqid |
|- ( -g ` Z ) = ( -g ` Z ) |
29 |
1 27 23 28 2 3
|
zlmodzxznm |
|- A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) |
30 |
|
r19.26 |
|- ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) <-> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) ) |
31 |
|
oveq1 |
|- ( i = ( F ` B ) -> ( i ( .s ` Z ) B ) = ( ( F ` B ) ( .s ` Z ) B ) ) |
32 |
31
|
neeq1d |
|- ( i = ( F ` B ) -> ( ( i ( .s ` Z ) B ) =/= A <-> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) |
33 |
32
|
rspcv |
|- ( ( F ` B ) e. ZZ -> ( A. i e. ZZ ( i ( .s ` Z ) B ) =/= A -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) |
34 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
35 |
34
|
eqcomi |
|- ( Base ` ZZring ) = ZZ |
36 |
35
|
eleq2i |
|- ( ( F ` B ) e. ( Base ` ZZring ) <-> ( F ` B ) e. ZZ ) |
37 |
36
|
biimpi |
|- ( ( F ` B ) e. ( Base ` ZZring ) -> ( F ` B ) e. ZZ ) |
38 |
37
|
adantr |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ` B ) e. ZZ ) |
39 |
33 38
|
syl11 |
|- ( A. i e. ZZ ( i ( .s ` Z ) B ) =/= A -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) |
40 |
39
|
adantl |
|- ( ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) |
41 |
30 40
|
sylbi |
|- ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) |
42 |
29 41
|
ax-mp |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) |
43 |
26 42
|
eqnetrd |
|- ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) =/= A ) |
44 |
7 43
|
sylbi |
|- ( F : { B } --> ( Base ` ZZring ) -> ( F ( linC ` Z ) { B } ) =/= A ) |
45 |
4 44
|
syl |
|- ( F e. ( ( Base ` ZZring ) ^m { B } ) -> ( F ( linC ` Z ) { B } ) =/= A ) |