| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | elmapi |  |-  ( F e. ( ( Base ` ZZring ) ^m { B } ) -> F : { B } --> ( Base ` ZZring ) ) | 
						
							| 5 |  | prex |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. _V | 
						
							| 6 | 3 5 | eqeltri |  |-  B e. _V | 
						
							| 7 | 6 | fsn2 |  |-  ( F : { B } --> ( Base ` ZZring ) <-> ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) ) | 
						
							| 8 |  | oveq1 |  |-  ( F = { <. B , ( F ` B ) >. } -> ( F ( linC ` Z ) { B } ) = ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) = ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) ) | 
						
							| 10 | 1 | zlmodzxzlmod |  |-  ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) | 
						
							| 11 | 10 | simpli |  |-  Z e. LMod | 
						
							| 12 | 11 | a1i |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> Z e. LMod ) | 
						
							| 13 |  | 2z |  |-  2 e. ZZ | 
						
							| 14 |  | 4z |  |-  4 e. ZZ | 
						
							| 15 | 1 | zlmodzxzel |  |-  ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) | 
						
							| 16 | 13 14 15 | mp2an |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) | 
						
							| 17 | 3 16 | eqeltri |  |-  B e. ( Base ` Z ) | 
						
							| 18 | 17 | a1i |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> B e. ( Base ` Z ) ) | 
						
							| 19 |  | simpl |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ` B ) e. ( Base ` ZZring ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 21 | 10 | simpri |  |-  ZZring = ( Scalar ` Z ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ZZring ) = ( Base ` ZZring ) | 
						
							| 23 |  | eqid |  |-  ( .s ` Z ) = ( .s ` Z ) | 
						
							| 24 | 20 21 22 23 | lincvalsng |  |-  ( ( Z e. LMod /\ B e. ( Base ` Z ) /\ ( F ` B ) e. ( Base ` ZZring ) ) -> ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 25 | 12 18 19 24 | syl3anc |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( { <. B , ( F ` B ) >. } ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 26 | 9 25 | eqtrd |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) = ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 27 |  | eqid |  |-  { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 28 |  | eqid |  |-  ( -g ` Z ) = ( -g ` Z ) | 
						
							| 29 | 1 27 23 28 2 3 | zlmodzxznm |  |-  A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) | 
						
							| 30 |  | r19.26 |  |-  ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) <-> ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) ) | 
						
							| 31 |  | oveq1 |  |-  ( i = ( F ` B ) -> ( i ( .s ` Z ) B ) = ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 32 | 31 | neeq1d |  |-  ( i = ( F ` B ) -> ( ( i ( .s ` Z ) B ) =/= A <-> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) | 
						
							| 33 | 32 | rspcv |  |-  ( ( F ` B ) e. ZZ -> ( A. i e. ZZ ( i ( .s ` Z ) B ) =/= A -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) | 
						
							| 34 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 35 | 34 | eqcomi |  |-  ( Base ` ZZring ) = ZZ | 
						
							| 36 | 35 | eleq2i |  |-  ( ( F ` B ) e. ( Base ` ZZring ) <-> ( F ` B ) e. ZZ ) | 
						
							| 37 | 36 | biimpi |  |-  ( ( F ` B ) e. ( Base ` ZZring ) -> ( F ` B ) e. ZZ ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ` B ) e. ZZ ) | 
						
							| 39 | 33 38 | syl11 |  |-  ( A. i e. ZZ ( i ( .s ` Z ) B ) =/= A -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) | 
						
							| 40 | 39 | adantl |  |-  ( ( A. i e. ZZ ( i ( .s ` Z ) A ) =/= B /\ A. i e. ZZ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) | 
						
							| 41 | 30 40 | sylbi |  |-  ( A. i e. ZZ ( ( i ( .s ` Z ) A ) =/= B /\ ( i ( .s ` Z ) B ) =/= A ) -> ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) ) | 
						
							| 42 | 29 41 | ax-mp |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( ( F ` B ) ( .s ` Z ) B ) =/= A ) | 
						
							| 43 | 26 42 | eqnetrd |  |-  ( ( ( F ` B ) e. ( Base ` ZZring ) /\ F = { <. B , ( F ` B ) >. } ) -> ( F ( linC ` Z ) { B } ) =/= A ) | 
						
							| 44 | 7 43 | sylbi |  |-  ( F : { B } --> ( Base ` ZZring ) -> ( F ( linC ` Z ) { B } ) =/= A ) | 
						
							| 45 | 4 44 | syl |  |-  ( F e. ( ( Base ` ZZring ) ^m { B } ) -> ( F ( linC ` Z ) { B } ) =/= A ) |