| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z | ⊢ 𝑍  =  ( ℤring  freeLMod  { 0 ,  1 } ) | 
						
							| 2 |  | zlmodzxzldep.a | ⊢ 𝐴  =  { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 } | 
						
							| 3 |  | zlmodzxzldep.b | ⊢ 𝐵  =  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 } | 
						
							| 4 |  | elmapi | ⊢ ( 𝐹  ∈  ( ( Base ‘ ℤring )  ↑m  { 𝐵 } )  →  𝐹 : { 𝐵 } ⟶ ( Base ‘ ℤring ) ) | 
						
							| 5 |  | prex | ⊢ { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  V | 
						
							| 6 | 3 5 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 7 | 6 | fsn2 | ⊢ ( 𝐹 : { 𝐵 } ⟶ ( Base ‘ ℤring )  ↔  ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 }  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  =  ( { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } (  linC  ‘ 𝑍 ) { 𝐵 } ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  =  ( { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } (  linC  ‘ 𝑍 ) { 𝐵 } ) ) | 
						
							| 10 | 1 | zlmodzxzlmod | ⊢ ( 𝑍  ∈  LMod  ∧  ℤring  =  ( Scalar ‘ 𝑍 ) ) | 
						
							| 11 | 10 | simpli | ⊢ 𝑍  ∈  LMod | 
						
							| 12 | 11 | a1i | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  𝑍  ∈  LMod ) | 
						
							| 13 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 14 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 15 | 1 | zlmodzxzel | ⊢ ( ( 2  ∈  ℤ  ∧  4  ∈  ℤ )  →  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) | 
						
							| 17 | 3 16 | eqeltri | ⊢ 𝐵  ∈  ( Base ‘ 𝑍 ) | 
						
							| 18 | 17 | a1i | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  𝐵  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring ) ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 21 | 10 | simpri | ⊢ ℤring  =  ( Scalar ‘ 𝑍 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ ℤring )  =  ( Base ‘ ℤring ) | 
						
							| 23 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑍 )  =  (  ·𝑠  ‘ 𝑍 ) | 
						
							| 24 | 20 21 22 23 | lincvalsng | ⊢ ( ( 𝑍  ∈  LMod  ∧  𝐵  ∈  ( Base ‘ 𝑍 )  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring ) )  →  ( { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } (  linC  ‘ 𝑍 ) { 𝐵 } )  =  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 25 | 12 18 19 24 | syl3anc | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } (  linC  ‘ 𝑍 ) { 𝐵 } )  =  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 26 | 9 25 | eqtrd | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  =  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 27 |  | eqid | ⊢ { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 }  =  { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 } | 
						
							| 28 |  | eqid | ⊢ ( -g ‘ 𝑍 )  =  ( -g ‘ 𝑍 ) | 
						
							| 29 | 1 27 23 28 2 3 | zlmodzxznm | ⊢ ∀ 𝑖  ∈  ℤ ( ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ≠  𝐵  ∧  ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) | 
						
							| 30 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  ℤ ( ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ≠  𝐵  ∧  ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 )  ↔  ( ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ≠  𝐵  ∧  ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝑖  =  ( 𝐹 ‘ 𝐵 )  →  ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  =  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 32 | 31 | neeq1d | ⊢ ( 𝑖  =  ( 𝐹 ‘ 𝐵 )  →  ( ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴  ↔  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 33 | 32 | rspcv | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ℤ  →  ( ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 34 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 35 | 34 | eqcomi | ⊢ ( Base ‘ ℤring )  =  ℤ | 
						
							| 36 | 35 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ↔  ( 𝐹 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 37 | 36 | biimpi | ⊢ ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 39 | 33 38 | syl11 | ⊢ ( ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴  →  ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ≠  𝐵  ∧  ∀ 𝑖  ∈  ℤ ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 )  →  ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 41 | 30 40 | sylbi | ⊢ ( ∀ 𝑖  ∈  ℤ ( ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ≠  𝐵  ∧  ( 𝑖 (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 )  →  ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) ) | 
						
							| 42 | 29 41 | ax-mp | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ≠  𝐴 ) | 
						
							| 43 | 26 42 | eqnetrd | ⊢ ( ( ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ℤring )  ∧  𝐹  =  { 〈 𝐵 ,  ( 𝐹 ‘ 𝐵 ) 〉 } )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  ≠  𝐴 ) | 
						
							| 44 | 7 43 | sylbi | ⊢ ( 𝐹 : { 𝐵 } ⟶ ( Base ‘ ℤring )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  ≠  𝐴 ) | 
						
							| 45 | 4 44 | syl | ⊢ ( 𝐹  ∈  ( ( Base ‘ ℤring )  ↑m  { 𝐵 } )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐵 } )  ≠  𝐴 ) |