Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|
2 |
|
zlmodzxzldep.a |
|
3 |
|
zlmodzxzldep.b |
|
4 |
|
eqid |
|
5 |
1 2 3 4
|
zlmodzxzldeplem1 |
|
6 |
1 2 3 4
|
zlmodzxzldeplem2 |
|
7 |
1 2 3 4
|
zlmodzxzldeplem3 |
|
8 |
1 2 3 4
|
zlmodzxzldeplem4 |
|
9 |
6 7 8
|
3pm3.2i |
|
10 |
|
breq1 |
|
11 |
|
oveq1 |
|
12 |
11
|
eqeq1d |
|
13 |
|
fveq1 |
|
14 |
13
|
neeq1d |
|
15 |
14
|
rexbidv |
|
16 |
10 12 15
|
3anbi123d |
|
17 |
16
|
rspcev |
|
18 |
5 9 17
|
mp2an |
|
19 |
|
ovex |
|
20 |
1 19
|
eqeltri |
|
21 |
|
3z |
|
22 |
|
6nn |
|
23 |
22
|
nnzi |
|
24 |
1
|
zlmodzxzel |
|
25 |
21 23 24
|
mp2an |
|
26 |
2 25
|
eqeltri |
|
27 |
|
2z |
|
28 |
|
4z |
|
29 |
1
|
zlmodzxzel |
|
30 |
27 28 29
|
mp2an |
|
31 |
3 30
|
eqeltri |
|
32 |
|
prelpwi |
|
33 |
26 31 32
|
mp2an |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
1
|
zlmodzxzlmod |
|
37 |
36
|
simpri |
|
38 |
|
zringbas |
|
39 |
|
zring0 |
|
40 |
34 35 37 38 39
|
islindeps |
|
41 |
20 33 40
|
mp2an |
|
42 |
18 41
|
mpbir |
|