Metamath Proof Explorer


Theorem zlmodzxzldeplem2

Description: Lemma 2 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
zlmodzxzldeplem.f F = A 2 B 3
Assertion zlmodzxzldeplem2 finSupp 0 F

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 zlmodzxzldeplem.f F = A 2 B 3
5 1 2 3 4 zlmodzxzldeplem1 F A B
6 elmapi F A B F : A B
7 prfi A B Fin
8 7 a1i F A B A B Fin
9 c0ex 0 V
10 9 a1i F A B 0 V
11 6 8 10 fdmfifsupp F A B finSupp 0 F
12 5 11 ax-mp finSupp 0 F