Metamath Proof Explorer


Theorem zlmodzxzldeplem1

Description: Lemma 1 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
zlmodzxzldeplem.f F = A 2 B 3
Assertion zlmodzxzldeplem1 F A B

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 zlmodzxzldeplem.f F = A 2 B 3
5 zex V
6 prex A B V
7 prex 0 3 1 6 V
8 2 7 eqeltri A V
9 prex 0 2 1 4 V
10 3 9 eqeltri B V
11 8 10 pm3.2i A V B V
12 11 a1i V A B V A V B V
13 2z 2
14 3nn0 3 0
15 14 nn0negzi 3
16 13 15 pm3.2i 2 3
17 16 a1i V A B V 2 3
18 1 2 3 zlmodzxzldeplem A B
19 18 a1i V A B V A B
20 fprg A V B V 2 3 A B A 2 B 3 : A B 2 3
21 4 feq1i F : A B 2 3 A 2 B 3 : A B 2 3
22 20 21 sylibr A V B V 2 3 A B F : A B 2 3
23 12 17 19 22 syl3anc V A B V F : A B 2 3
24 prssi 2 3 2 3
25 13 15 24 mp2an 2 3
26 fss F : A B 2 3 2 3 F : A B
27 23 25 26 sylancl V A B V F : A B
28 elmapg V A B V F A B F : A B
29 27 28 mpbird V A B V F A B
30 5 6 29 mp2an F A B