Metamath Proof Explorer


Theorem zlmodzxzldeplem1

Description: Lemma 1 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
zlmodzxzldeplem.f 𝐹 = { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ }
Assertion zlmodzxzldeplem1 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } )

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
3 zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
4 zlmodzxzldeplem.f 𝐹 = { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ }
5 zex ℤ ∈ V
6 prex { 𝐴 , 𝐵 } ∈ V
7 prex { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ } ∈ V
8 2 7 eqeltri 𝐴 ∈ V
9 prex { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ } ∈ V
10 3 9 eqeltri 𝐵 ∈ V
11 8 10 pm3.2i ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
12 11 a1i ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
13 2z 2 ∈ ℤ
14 3nn0 3 ∈ ℕ0
15 14 nn0negzi - 3 ∈ ℤ
16 13 15 pm3.2i ( 2 ∈ ℤ ∧ - 3 ∈ ℤ )
17 16 a1i ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → ( 2 ∈ ℤ ∧ - 3 ∈ ℤ ) )
18 1 2 3 zlmodzxzldeplem 𝐴𝐵
19 18 a1i ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → 𝐴𝐵 )
20 fprg ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 2 ∈ ℤ ∧ - 3 ∈ ℤ ) ∧ 𝐴𝐵 ) → { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ } : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } )
21 4 feq1i ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } ↔ { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ } : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } )
22 20 21 sylibr ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ ( 2 ∈ ℤ ∧ - 3 ∈ ℤ ) ∧ 𝐴𝐵 ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } )
23 12 17 19 22 syl3anc ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } )
24 prssi ( ( 2 ∈ ℤ ∧ - 3 ∈ ℤ ) → { 2 , - 3 } ⊆ ℤ )
25 13 15 24 mp2an { 2 , - 3 } ⊆ ℤ
26 fss ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ { 2 , - 3 } ∧ { 2 , - 3 } ⊆ ℤ ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ )
27 23 25 26 sylancl ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ )
28 elmapg ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) ↔ 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ ) )
29 27 28 mpbird ( ( ℤ ∈ V ∧ { 𝐴 , 𝐵 } ∈ V ) → 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) )
30 5 6 29 mp2an 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } )