| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z | ⊢ 𝑍  =  ( ℤring  freeLMod  { 0 ,  1 } ) | 
						
							| 2 |  | zlmodzxzldep.a | ⊢ 𝐴  =  { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 } | 
						
							| 3 |  | zlmodzxzldep.b | ⊢ 𝐵  =  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 } | 
						
							| 4 |  | zlmodzxzldeplem.f | ⊢ 𝐹  =  { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } | 
						
							| 5 | 1 2 3 4 | zlmodzxzldeplem1 | ⊢ 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } ) | 
						
							| 6 |  | elmapi | ⊢ ( 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } )  →  𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ ) | 
						
							| 7 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } )  →  { 𝐴 ,  𝐵 }  ∈  Fin ) | 
						
							| 9 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } )  →  0  ∈  V ) | 
						
							| 11 | 6 8 10 | fdmfifsupp | ⊢ ( 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } )  →  𝐹  finSupp  0 ) | 
						
							| 12 | 5 11 | ax-mp | ⊢ 𝐹  finSupp  0 |