Metamath Proof Explorer


Theorem zlmodzxzldeplem2

Description: Lemma 2 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
zlmodzxzldeplem.f 𝐹 = { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ }
Assertion zlmodzxzldeplem2 𝐹 finSupp 0

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z 𝑍 = ( ℤring freeLMod { 0 , 1 } )
2 zlmodzxzldep.a 𝐴 = { ⟨ 0 , 3 ⟩ , ⟨ 1 , 6 ⟩ }
3 zlmodzxzldep.b 𝐵 = { ⟨ 0 , 2 ⟩ , ⟨ 1 , 4 ⟩ }
4 zlmodzxzldeplem.f 𝐹 = { ⟨ 𝐴 , 2 ⟩ , ⟨ 𝐵 , - 3 ⟩ }
5 1 2 3 4 zlmodzxzldeplem1 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } )
6 elmapi ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ )
7 prfi { 𝐴 , 𝐵 } ∈ Fin
8 7 a1i ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) → { 𝐴 , 𝐵 } ∈ Fin )
9 c0ex 0 ∈ V
10 9 a1i ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) → 0 ∈ V )
11 6 8 10 fdmfifsupp ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) → 𝐹 finSupp 0 )
12 5 11 ax-mp 𝐹 finSupp 0