| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z | ⊢ 𝑍  =  ( ℤring  freeLMod  { 0 ,  1 } ) | 
						
							| 2 |  | zlmodzxzldep.a | ⊢ 𝐴  =  { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 } | 
						
							| 3 |  | zlmodzxzldep.b | ⊢ 𝐵  =  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 } | 
						
							| 4 |  | zlmodzxzldeplem.f | ⊢ 𝐹  =  { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } | 
						
							| 5 |  | ovex | ⊢ ( ℤring  freeLMod  { 0 ,  1 } )  ∈  V | 
						
							| 6 | 1 5 | eqeltri | ⊢ 𝑍  ∈  V | 
						
							| 7 | 1 2 3 4 | zlmodzxzldeplem1 | ⊢ 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } ) | 
						
							| 8 | 1 | zlmodzxzlmod | ⊢ ( 𝑍  ∈  LMod  ∧  ℤring  =  ( Scalar ‘ 𝑍 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑍  ∈  LMod  ∧  ℤring  =  ( Scalar ‘ 𝑍 ) )  →  ℤring  =  ( Scalar ‘ 𝑍 ) ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( 𝑍  ∈  LMod  ∧  ℤring  =  ( Scalar ‘ 𝑍 ) )  →  ( Scalar ‘ 𝑍 )  =  ℤring ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ ( Scalar ‘ 𝑍 )  =  ℤring | 
						
							| 12 | 11 | fveq2i | ⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) )  =  ( Base ‘ ℤring ) | 
						
							| 13 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 14 | 13 | eqcomi | ⊢ ( Base ‘ ℤring )  =  ℤ | 
						
							| 15 | 12 14 | eqtri | ⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) )  =  ℤ | 
						
							| 16 | 15 | oveq1i | ⊢ ( ( Base ‘ ( Scalar ‘ 𝑍 ) )  ↑m  { 𝐴 ,  𝐵 } )  =  ( ℤ  ↑m  { 𝐴 ,  𝐵 } ) | 
						
							| 17 | 7 16 | eleqtrri | ⊢ 𝐹  ∈  ( ( Base ‘ ( Scalar ‘ 𝑍 ) )  ↑m  { 𝐴 ,  𝐵 } ) | 
						
							| 18 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 19 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 20 | 19 | nnzi | ⊢ 6  ∈  ℤ | 
						
							| 21 | 1 | zlmodzxzel | ⊢ ( ( 3  ∈  ℤ  ∧  6  ∈  ℤ )  →  { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 }  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 22 | 18 20 21 | mp2an | ⊢ { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 }  ∈  ( Base ‘ 𝑍 ) | 
						
							| 23 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 24 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 25 | 1 | zlmodzxzel | ⊢ ( ( 2  ∈  ℤ  ∧  4  ∈  ℤ )  →  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 26 | 23 24 25 | mp2an | ⊢ { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) | 
						
							| 27 | 2 | eleq1i | ⊢ ( 𝐴  ∈  ( Base ‘ 𝑍 )  ↔  { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 }  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 28 | 3 | eleq1i | ⊢ ( 𝐵  ∈  ( Base ‘ 𝑍 )  ↔  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 29 | 27 28 | anbi12i | ⊢ ( ( 𝐴  ∈  ( Base ‘ 𝑍 )  ∧  𝐵  ∈  ( Base ‘ 𝑍 ) )  ↔  ( { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 }  ∈  ( Base ‘ 𝑍 )  ∧  { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  ( Base ‘ 𝑍 ) ) ) | 
						
							| 30 | 22 26 29 | mpbir2an | ⊢ ( 𝐴  ∈  ( Base ‘ 𝑍 )  ∧  𝐵  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 31 |  | prelpwi | ⊢ ( ( 𝐴  ∈  ( Base ‘ 𝑍 )  ∧  𝐵  ∈  ( Base ‘ 𝑍 ) )  →  { 𝐴 ,  𝐵 }  ∈  𝒫  ( Base ‘ 𝑍 ) ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ { 𝐴 ,  𝐵 }  ∈  𝒫  ( Base ‘ 𝑍 ) | 
						
							| 33 |  | lincval | ⊢ ( ( 𝑍  ∈  V  ∧  𝐹  ∈  ( ( Base ‘ ( Scalar ‘ 𝑍 ) )  ↑m  { 𝐴 ,  𝐵 } )  ∧  { 𝐴 ,  𝐵 }  ∈  𝒫  ( Base ‘ 𝑍 ) )  →  ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐴 ,  𝐵 } )  =  ( 𝑍  Σg  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 ) ) ) ) | 
						
							| 34 | 6 17 32 33 | mp3an | ⊢ ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐴 ,  𝐵 } )  =  ( 𝑍  Σg  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 ) ) ) | 
						
							| 35 |  | lmodcmn | ⊢ ( 𝑍  ∈  LMod  →  𝑍  ∈  CMnd ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝑍  ∈  LMod  ∧  ℤring  =  ( Scalar ‘ 𝑍 ) )  →  𝑍  ∈  CMnd ) | 
						
							| 37 | 8 36 | ax-mp | ⊢ 𝑍  ∈  CMnd | 
						
							| 38 |  | prex | ⊢ { 〈 0 ,  3 〉 ,  〈 1 ,  6 〉 }  ∈  V | 
						
							| 39 | 2 38 | eqeltri | ⊢ 𝐴  ∈  V | 
						
							| 40 |  | prex | ⊢ { 〈 0 ,  2 〉 ,  〈 1 ,  4 〉 }  ∈  V | 
						
							| 41 | 3 40 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 42 | 1 2 3 | zlmodzxzldeplem | ⊢ 𝐴  ≠  𝐵 | 
						
							| 43 | 39 41 42 | 3pm3.2i | ⊢ ( 𝐴  ∈  V  ∧  𝐵  ∈  V  ∧  𝐴  ≠  𝐵 ) | 
						
							| 44 | 8 | simpli | ⊢ 𝑍  ∈  LMod | 
						
							| 45 |  | elmapi | ⊢ ( 𝐹  ∈  ( ℤ  ↑m  { 𝐴 ,  𝐵 } )  →  𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ ) | 
						
							| 46 | 39 | prid1 | ⊢ 𝐴  ∈  { 𝐴 ,  𝐵 } | 
						
							| 47 |  | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ  ∧  𝐴  ∈  { 𝐴 ,  𝐵 } )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 48 | 46 47 | mpan2 | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ  →  ( 𝐹 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 49 | 7 45 48 | mp2b | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  ℤ | 
						
							| 50 | 8 9 | ax-mp | ⊢ ℤring  =  ( Scalar ‘ 𝑍 ) | 
						
							| 51 | 50 | eqcomi | ⊢ ( Scalar ‘ 𝑍 )  =  ℤring | 
						
							| 52 | 51 | fveq2i | ⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) )  =  ( Base ‘ ℤring ) | 
						
							| 53 | 52 14 | eqtri | ⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) )  =  ℤ | 
						
							| 54 | 49 53 | eleqtrri | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑍 ) ) | 
						
							| 55 | 2 22 | eqeltri | ⊢ 𝐴  ∈  ( Base ‘ 𝑍 ) | 
						
							| 56 |  | eqid | ⊢ ( Base ‘ 𝑍 )  =  ( Base ‘ 𝑍 ) | 
						
							| 57 |  | eqid | ⊢ ( Scalar ‘ 𝑍 )  =  ( Scalar ‘ 𝑍 ) | 
						
							| 58 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑍 )  =  (  ·𝑠  ‘ 𝑍 ) | 
						
							| 59 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) )  =  ( Base ‘ ( Scalar ‘ 𝑍 ) ) | 
						
							| 60 | 56 57 58 59 | lmodvscl | ⊢ ( ( 𝑍  ∈  LMod  ∧  ( 𝐹 ‘ 𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝑍 ) )  ∧  𝐴  ∈  ( Base ‘ 𝑍 ) )  →  ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 61 | 44 54 55 60 | mp3an | ⊢ ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ∈  ( Base ‘ 𝑍 ) | 
						
							| 62 | 41 | prid2 | ⊢ 𝐵  ∈  { 𝐴 ,  𝐵 } | 
						
							| 63 |  | ffvelcdm | ⊢ ( ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ  ∧  𝐵  ∈  { 𝐴 ,  𝐵 } )  →  ( 𝐹 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 64 | 62 63 | mpan2 | ⊢ ( 𝐹 : { 𝐴 ,  𝐵 } ⟶ ℤ  →  ( 𝐹 ‘ 𝐵 )  ∈  ℤ ) | 
						
							| 65 | 7 45 64 | mp2b | ⊢ ( 𝐹 ‘ 𝐵 )  ∈  ℤ | 
						
							| 66 | 65 53 | eleqtrri | ⊢ ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ( Scalar ‘ 𝑍 ) ) | 
						
							| 67 | 3 26 | eqeltri | ⊢ 𝐵  ∈  ( Base ‘ 𝑍 ) | 
						
							| 68 | 56 57 58 59 | lmodvscl | ⊢ ( ( 𝑍  ∈  LMod  ∧  ( 𝐹 ‘ 𝐵 )  ∈  ( Base ‘ ( Scalar ‘ 𝑍 ) )  ∧  𝐵  ∈  ( Base ‘ 𝑍 ) )  →  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 69 | 44 66 67 68 | mp3an | ⊢ ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ∈  ( Base ‘ 𝑍 ) | 
						
							| 70 | 61 69 | pm3.2i | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ∈  ( Base ‘ 𝑍 )  ∧  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ∈  ( Base ‘ 𝑍 ) ) | 
						
							| 71 |  | eqid | ⊢ ( +g ‘ 𝑍 )  =  ( +g ‘ 𝑍 ) | 
						
							| 72 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 73 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 74 | 72 73 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 )  =  ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐵 ) ) | 
						
							| 76 |  | id | ⊢ ( 𝑥  =  𝐵  →  𝑥  =  𝐵 ) | 
						
							| 77 | 75 76 | oveq12d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 )  =  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 78 | 56 71 74 77 | gsumpr | ⊢ ( ( 𝑍  ∈  CMnd  ∧  ( 𝐴  ∈  V  ∧  𝐵  ∈  V  ∧  𝐴  ≠  𝐵 )  ∧  ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 )  ∈  ( Base ‘ 𝑍 )  ∧  ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  ∈  ( Base ‘ 𝑍 ) ) )  →  ( 𝑍  Σg  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 ) ) )  =  ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) ) | 
						
							| 79 | 37 43 70 78 | mp3an | ⊢ ( 𝑍  Σg  ( 𝑥  ∈  { 𝐴 ,  𝐵 }  ↦  ( ( 𝐹 ‘ 𝑥 ) (  ·𝑠  ‘ 𝑍 ) 𝑥 ) ) )  =  ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 80 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐴 )  =  ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐴 ) | 
						
							| 81 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 82 | 39 81 | fvpr1 | ⊢ ( 𝐴  ≠  𝐵  →  ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐴 )  =  2 ) | 
						
							| 83 | 42 82 | ax-mp | ⊢ ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐴 )  =  2 | 
						
							| 84 | 80 83 | eqtri | ⊢ ( 𝐹 ‘ 𝐴 )  =  2 | 
						
							| 85 | 84 | oveq1i | ⊢ ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 )  =  ( 2 (  ·𝑠  ‘ 𝑍 ) 𝐴 ) | 
						
							| 86 | 4 | fveq1i | ⊢ ( 𝐹 ‘ 𝐵 )  =  ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐵 ) | 
						
							| 87 |  | negex | ⊢ - 3  ∈  V | 
						
							| 88 | 41 87 | fvpr2 | ⊢ ( 𝐴  ≠  𝐵  →  ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐵 )  =  - 3 ) | 
						
							| 89 | 42 88 | ax-mp | ⊢ ( { 〈 𝐴 ,  2 〉 ,  〈 𝐵 ,  - 3 〉 } ‘ 𝐵 )  =  - 3 | 
						
							| 90 | 86 89 | eqtri | ⊢ ( 𝐹 ‘ 𝐵 )  =  - 3 | 
						
							| 91 | 90 | oveq1i | ⊢ ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 )  =  ( - 3 (  ·𝑠  ‘ 𝑍 ) 𝐵 ) | 
						
							| 92 | 85 91 | oveq12i | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) )  =  ( ( 2 (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( - 3 (  ·𝑠  ‘ 𝑍 ) 𝐵 ) ) | 
						
							| 93 |  | eqid | ⊢ { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 }  =  { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 } | 
						
							| 94 | 1 93 | zlmodzxz0 | ⊢ { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 }  =  ( 0g ‘ 𝑍 ) | 
						
							| 95 | 94 | eqcomi | ⊢ ( 0g ‘ 𝑍 )  =  { 〈 0 ,  0 〉 ,  〈 1 ,  0 〉 } | 
						
							| 96 | 1 2 3 95 71 58 | zlmodzxzequap | ⊢ ( ( 2 (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( - 3 (  ·𝑠  ‘ 𝑍 ) 𝐵 ) )  =  ( 0g ‘ 𝑍 ) | 
						
							| 97 | 92 96 | eqtri | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) (  ·𝑠  ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) (  ·𝑠  ‘ 𝑍 ) 𝐵 ) )  =  ( 0g ‘ 𝑍 ) | 
						
							| 98 | 34 79 97 | 3eqtri | ⊢ ( 𝐹 (  linC  ‘ 𝑍 ) { 𝐴 ,  𝐵 } )  =  ( 0g ‘ 𝑍 ) |