Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
⊢ 𝑍 = ( ℤring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
⊢ 𝐴 = { 〈 0 , 3 〉 , 〈 1 , 6 〉 } |
3 |
|
zlmodzxzldep.b |
⊢ 𝐵 = { 〈 0 , 2 〉 , 〈 1 , 4 〉 } |
4 |
|
zlmodzxzldeplem.f |
⊢ 𝐹 = { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } |
5 |
|
ovex |
⊢ ( ℤring freeLMod { 0 , 1 } ) ∈ V |
6 |
1 5
|
eqeltri |
⊢ 𝑍 ∈ V |
7 |
1 2 3 4
|
zlmodzxzldeplem1 |
⊢ 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) |
8 |
1
|
zlmodzxzlmod |
⊢ ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) |
9 |
|
simpr |
⊢ ( ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) → ℤring = ( Scalar ‘ 𝑍 ) ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) → ( Scalar ‘ 𝑍 ) = ℤring ) |
11 |
8 10
|
ax-mp |
⊢ ( Scalar ‘ 𝑍 ) = ℤring |
12 |
11
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ( Base ‘ ℤring ) |
13 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
14 |
13
|
eqcomi |
⊢ ( Base ‘ ℤring ) = ℤ |
15 |
12 14
|
eqtri |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ℤ |
16 |
15
|
oveq1i |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑍 ) ) ↑m { 𝐴 , 𝐵 } ) = ( ℤ ↑m { 𝐴 , 𝐵 } ) |
17 |
7 16
|
eleqtrri |
⊢ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑍 ) ) ↑m { 𝐴 , 𝐵 } ) |
18 |
|
3z |
⊢ 3 ∈ ℤ |
19 |
|
6nn |
⊢ 6 ∈ ℕ |
20 |
19
|
nnzi |
⊢ 6 ∈ ℤ |
21 |
1
|
zlmodzxzel |
⊢ ( ( 3 ∈ ℤ ∧ 6 ∈ ℤ ) → { 〈 0 , 3 〉 , 〈 1 , 6 〉 } ∈ ( Base ‘ 𝑍 ) ) |
22 |
18 20 21
|
mp2an |
⊢ { 〈 0 , 3 〉 , 〈 1 , 6 〉 } ∈ ( Base ‘ 𝑍 ) |
23 |
|
2z |
⊢ 2 ∈ ℤ |
24 |
|
4z |
⊢ 4 ∈ ℤ |
25 |
1
|
zlmodzxzel |
⊢ ( ( 2 ∈ ℤ ∧ 4 ∈ ℤ ) → { 〈 0 , 2 〉 , 〈 1 , 4 〉 } ∈ ( Base ‘ 𝑍 ) ) |
26 |
23 24 25
|
mp2an |
⊢ { 〈 0 , 2 〉 , 〈 1 , 4 〉 } ∈ ( Base ‘ 𝑍 ) |
27 |
2
|
eleq1i |
⊢ ( 𝐴 ∈ ( Base ‘ 𝑍 ) ↔ { 〈 0 , 3 〉 , 〈 1 , 6 〉 } ∈ ( Base ‘ 𝑍 ) ) |
28 |
3
|
eleq1i |
⊢ ( 𝐵 ∈ ( Base ‘ 𝑍 ) ↔ { 〈 0 , 2 〉 , 〈 1 , 4 〉 } ∈ ( Base ‘ 𝑍 ) ) |
29 |
27 28
|
anbi12i |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑍 ) ∧ 𝐵 ∈ ( Base ‘ 𝑍 ) ) ↔ ( { 〈 0 , 3 〉 , 〈 1 , 6 〉 } ∈ ( Base ‘ 𝑍 ) ∧ { 〈 0 , 2 〉 , 〈 1 , 4 〉 } ∈ ( Base ‘ 𝑍 ) ) ) |
30 |
22 26 29
|
mpbir2an |
⊢ ( 𝐴 ∈ ( Base ‘ 𝑍 ) ∧ 𝐵 ∈ ( Base ‘ 𝑍 ) ) |
31 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝑍 ) ∧ 𝐵 ∈ ( Base ‘ 𝑍 ) ) → { 𝐴 , 𝐵 } ∈ 𝒫 ( Base ‘ 𝑍 ) ) |
32 |
30 31
|
ax-mp |
⊢ { 𝐴 , 𝐵 } ∈ 𝒫 ( Base ‘ 𝑍 ) |
33 |
|
lincval |
⊢ ( ( 𝑍 ∈ V ∧ 𝐹 ∈ ( ( Base ‘ ( Scalar ‘ 𝑍 ) ) ↑m { 𝐴 , 𝐵 } ) ∧ { 𝐴 , 𝐵 } ∈ 𝒫 ( Base ‘ 𝑍 ) ) → ( 𝐹 ( linC ‘ 𝑍 ) { 𝐴 , 𝐵 } ) = ( 𝑍 Σg ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) ) ) ) |
34 |
6 17 32 33
|
mp3an |
⊢ ( 𝐹 ( linC ‘ 𝑍 ) { 𝐴 , 𝐵 } ) = ( 𝑍 Σg ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) ) ) |
35 |
|
lmodcmn |
⊢ ( 𝑍 ∈ LMod → 𝑍 ∈ CMnd ) |
36 |
35
|
adantr |
⊢ ( ( 𝑍 ∈ LMod ∧ ℤring = ( Scalar ‘ 𝑍 ) ) → 𝑍 ∈ CMnd ) |
37 |
8 36
|
ax-mp |
⊢ 𝑍 ∈ CMnd |
38 |
|
prex |
⊢ { 〈 0 , 3 〉 , 〈 1 , 6 〉 } ∈ V |
39 |
2 38
|
eqeltri |
⊢ 𝐴 ∈ V |
40 |
|
prex |
⊢ { 〈 0 , 2 〉 , 〈 1 , 4 〉 } ∈ V |
41 |
3 40
|
eqeltri |
⊢ 𝐵 ∈ V |
42 |
1 2 3
|
zlmodzxzldeplem |
⊢ 𝐴 ≠ 𝐵 |
43 |
39 41 42
|
3pm3.2i |
⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) |
44 |
8
|
simpli |
⊢ 𝑍 ∈ LMod |
45 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ℤ ↑m { 𝐴 , 𝐵 } ) → 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ ) |
46 |
39
|
prid1 |
⊢ 𝐴 ∈ { 𝐴 , 𝐵 } |
47 |
|
ffvelrn |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ ∧ 𝐴 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐴 ) ∈ ℤ ) |
48 |
46 47
|
mpan2 |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ → ( 𝐹 ‘ 𝐴 ) ∈ ℤ ) |
49 |
7 45 48
|
mp2b |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ ℤ |
50 |
8 9
|
ax-mp |
⊢ ℤring = ( Scalar ‘ 𝑍 ) |
51 |
50
|
eqcomi |
⊢ ( Scalar ‘ 𝑍 ) = ℤring |
52 |
51
|
fveq2i |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ( Base ‘ ℤring ) |
53 |
52 14
|
eqtri |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ℤ |
54 |
49 53
|
eleqtrri |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) |
55 |
2 22
|
eqeltri |
⊢ 𝐴 ∈ ( Base ‘ 𝑍 ) |
56 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
57 |
|
eqid |
⊢ ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑍 ) |
58 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑍 ) = ( ·𝑠 ‘ 𝑍 ) |
59 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ( Base ‘ ( Scalar ‘ 𝑍 ) ) |
60 |
56 57 58 59
|
lmodvscl |
⊢ ( ( 𝑍 ∈ LMod ∧ ( 𝐹 ‘ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) ∧ 𝐴 ∈ ( Base ‘ 𝑍 ) ) → ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ∈ ( Base ‘ 𝑍 ) ) |
61 |
44 54 55 60
|
mp3an |
⊢ ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ∈ ( Base ‘ 𝑍 ) |
62 |
41
|
prid2 |
⊢ 𝐵 ∈ { 𝐴 , 𝐵 } |
63 |
|
ffvelrn |
⊢ ( ( 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ ∧ 𝐵 ∈ { 𝐴 , 𝐵 } ) → ( 𝐹 ‘ 𝐵 ) ∈ ℤ ) |
64 |
62 63
|
mpan2 |
⊢ ( 𝐹 : { 𝐴 , 𝐵 } ⟶ ℤ → ( 𝐹 ‘ 𝐵 ) ∈ ℤ ) |
65 |
7 45 64
|
mp2b |
⊢ ( 𝐹 ‘ 𝐵 ) ∈ ℤ |
66 |
65 53
|
eleqtrri |
⊢ ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) |
67 |
3 26
|
eqeltri |
⊢ 𝐵 ∈ ( Base ‘ 𝑍 ) |
68 |
56 57 58 59
|
lmodvscl |
⊢ ( ( 𝑍 ∈ LMod ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) ∧ 𝐵 ∈ ( Base ‘ 𝑍 ) ) → ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ∈ ( Base ‘ 𝑍 ) ) |
69 |
44 66 67 68
|
mp3an |
⊢ ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ∈ ( Base ‘ 𝑍 ) |
70 |
61 69
|
pm3.2i |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ∈ ( Base ‘ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ∈ ( Base ‘ 𝑍 ) ) |
71 |
|
eqid |
⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) |
72 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
73 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
74 |
72 73
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) = ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ) |
75 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) |
76 |
|
id |
⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) |
77 |
75 76
|
oveq12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) = ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) |
78 |
56 71 74 77
|
gsumpr |
⊢ ( ( 𝑍 ∈ CMnd ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ∈ ( Base ‘ 𝑍 ) ∧ ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ∈ ( Base ‘ 𝑍 ) ) ) → ( 𝑍 Σg ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) ) |
79 |
37 43 70 78
|
mp3an |
⊢ ( 𝑍 Σg ( 𝑥 ∈ { 𝐴 , 𝐵 } ↦ ( ( 𝐹 ‘ 𝑥 ) ( ·𝑠 ‘ 𝑍 ) 𝑥 ) ) ) = ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) |
80 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐴 ) = ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐴 ) |
81 |
|
2ex |
⊢ 2 ∈ V |
82 |
39 81
|
fvpr1 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐴 ) = 2 ) |
83 |
42 82
|
ax-mp |
⊢ ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐴 ) = 2 |
84 |
80 83
|
eqtri |
⊢ ( 𝐹 ‘ 𝐴 ) = 2 |
85 |
84
|
oveq1i |
⊢ ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) = ( 2 ( ·𝑠 ‘ 𝑍 ) 𝐴 ) |
86 |
4
|
fveq1i |
⊢ ( 𝐹 ‘ 𝐵 ) = ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐵 ) |
87 |
|
negex |
⊢ - 3 ∈ V |
88 |
41 87
|
fvpr2 |
⊢ ( 𝐴 ≠ 𝐵 → ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐵 ) = - 3 ) |
89 |
42 88
|
ax-mp |
⊢ ( { 〈 𝐴 , 2 〉 , 〈 𝐵 , - 3 〉 } ‘ 𝐵 ) = - 3 |
90 |
86 89
|
eqtri |
⊢ ( 𝐹 ‘ 𝐵 ) = - 3 |
91 |
90
|
oveq1i |
⊢ ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) = ( - 3 ( ·𝑠 ‘ 𝑍 ) 𝐵 ) |
92 |
85 91
|
oveq12i |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) = ( ( 2 ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( - 3 ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) |
93 |
|
eqid |
⊢ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
94 |
1 93
|
zlmodzxz0 |
⊢ { 〈 0 , 0 〉 , 〈 1 , 0 〉 } = ( 0g ‘ 𝑍 ) |
95 |
94
|
eqcomi |
⊢ ( 0g ‘ 𝑍 ) = { 〈 0 , 0 〉 , 〈 1 , 0 〉 } |
96 |
1 2 3 95 71 58
|
zlmodzxzequap |
⊢ ( ( 2 ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( - 3 ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) = ( 0g ‘ 𝑍 ) |
97 |
92 96
|
eqtri |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) ( ·𝑠 ‘ 𝑍 ) 𝐴 ) ( +g ‘ 𝑍 ) ( ( 𝐹 ‘ 𝐵 ) ( ·𝑠 ‘ 𝑍 ) 𝐵 ) ) = ( 0g ‘ 𝑍 ) |
98 |
34 79 97
|
3eqtri |
⊢ ( 𝐹 ( linC ‘ 𝑍 ) { 𝐴 , 𝐵 } ) = ( 0g ‘ 𝑍 ) |