| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
| 2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
| 3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
| 4 |
|
zlmodzxzldeplem.f |
|- F = { <. A , 2 >. , <. B , -u 3 >. } |
| 5 |
|
ovex |
|- ( ZZring freeLMod { 0 , 1 } ) e. _V |
| 6 |
1 5
|
eqeltri |
|- Z e. _V |
| 7 |
1 2 3 4
|
zlmodzxzldeplem1 |
|- F e. ( ZZ ^m { A , B } ) |
| 8 |
1
|
zlmodzxzlmod |
|- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) |
| 9 |
|
simpr |
|- ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> ZZring = ( Scalar ` Z ) ) |
| 10 |
9
|
eqcomd |
|- ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> ( Scalar ` Z ) = ZZring ) |
| 11 |
8 10
|
ax-mp |
|- ( Scalar ` Z ) = ZZring |
| 12 |
11
|
fveq2i |
|- ( Base ` ( Scalar ` Z ) ) = ( Base ` ZZring ) |
| 13 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 14 |
13
|
eqcomi |
|- ( Base ` ZZring ) = ZZ |
| 15 |
12 14
|
eqtri |
|- ( Base ` ( Scalar ` Z ) ) = ZZ |
| 16 |
15
|
oveq1i |
|- ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) = ( ZZ ^m { A , B } ) |
| 17 |
7 16
|
eleqtrri |
|- F e. ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) |
| 18 |
|
3z |
|- 3 e. ZZ |
| 19 |
|
6nn |
|- 6 e. NN |
| 20 |
19
|
nnzi |
|- 6 e. ZZ |
| 21 |
1
|
zlmodzxzel |
|- ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) |
| 22 |
18 20 21
|
mp2an |
|- { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) |
| 23 |
|
2z |
|- 2 e. ZZ |
| 24 |
|
4z |
|- 4 e. ZZ |
| 25 |
1
|
zlmodzxzel |
|- ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) |
| 26 |
23 24 25
|
mp2an |
|- { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) |
| 27 |
2
|
eleq1i |
|- ( A e. ( Base ` Z ) <-> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) |
| 28 |
3
|
eleq1i |
|- ( B e. ( Base ` Z ) <-> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) |
| 29 |
27 28
|
anbi12i |
|- ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) <-> ( { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) /\ { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) ) |
| 30 |
22 26 29
|
mpbir2an |
|- ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) |
| 31 |
|
prelpwi |
|- ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) -> { A , B } e. ~P ( Base ` Z ) ) |
| 32 |
30 31
|
ax-mp |
|- { A , B } e. ~P ( Base ` Z ) |
| 33 |
|
lincval |
|- ( ( Z e. _V /\ F e. ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) /\ { A , B } e. ~P ( Base ` Z ) ) -> ( F ( linC ` Z ) { A , B } ) = ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) ) |
| 34 |
6 17 32 33
|
mp3an |
|- ( F ( linC ` Z ) { A , B } ) = ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) |
| 35 |
|
lmodcmn |
|- ( Z e. LMod -> Z e. CMnd ) |
| 36 |
35
|
adantr |
|- ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> Z e. CMnd ) |
| 37 |
8 36
|
ax-mp |
|- Z e. CMnd |
| 38 |
|
prex |
|- { <. 0 , 3 >. , <. 1 , 6 >. } e. _V |
| 39 |
2 38
|
eqeltri |
|- A e. _V |
| 40 |
|
prex |
|- { <. 0 , 2 >. , <. 1 , 4 >. } e. _V |
| 41 |
3 40
|
eqeltri |
|- B e. _V |
| 42 |
1 2 3
|
zlmodzxzldeplem |
|- A =/= B |
| 43 |
39 41 42
|
3pm3.2i |
|- ( A e. _V /\ B e. _V /\ A =/= B ) |
| 44 |
8
|
simpli |
|- Z e. LMod |
| 45 |
|
elmapi |
|- ( F e. ( ZZ ^m { A , B } ) -> F : { A , B } --> ZZ ) |
| 46 |
39
|
prid1 |
|- A e. { A , B } |
| 47 |
|
ffvelcdm |
|- ( ( F : { A , B } --> ZZ /\ A e. { A , B } ) -> ( F ` A ) e. ZZ ) |
| 48 |
46 47
|
mpan2 |
|- ( F : { A , B } --> ZZ -> ( F ` A ) e. ZZ ) |
| 49 |
7 45 48
|
mp2b |
|- ( F ` A ) e. ZZ |
| 50 |
8 9
|
ax-mp |
|- ZZring = ( Scalar ` Z ) |
| 51 |
50
|
eqcomi |
|- ( Scalar ` Z ) = ZZring |
| 52 |
51
|
fveq2i |
|- ( Base ` ( Scalar ` Z ) ) = ( Base ` ZZring ) |
| 53 |
52 14
|
eqtri |
|- ( Base ` ( Scalar ` Z ) ) = ZZ |
| 54 |
49 53
|
eleqtrri |
|- ( F ` A ) e. ( Base ` ( Scalar ` Z ) ) |
| 55 |
2 22
|
eqeltri |
|- A e. ( Base ` Z ) |
| 56 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
| 57 |
|
eqid |
|- ( Scalar ` Z ) = ( Scalar ` Z ) |
| 58 |
|
eqid |
|- ( .s ` Z ) = ( .s ` Z ) |
| 59 |
|
eqid |
|- ( Base ` ( Scalar ` Z ) ) = ( Base ` ( Scalar ` Z ) ) |
| 60 |
56 57 58 59
|
lmodvscl |
|- ( ( Z e. LMod /\ ( F ` A ) e. ( Base ` ( Scalar ` Z ) ) /\ A e. ( Base ` Z ) ) -> ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) ) |
| 61 |
44 54 55 60
|
mp3an |
|- ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) |
| 62 |
41
|
prid2 |
|- B e. { A , B } |
| 63 |
|
ffvelcdm |
|- ( ( F : { A , B } --> ZZ /\ B e. { A , B } ) -> ( F ` B ) e. ZZ ) |
| 64 |
62 63
|
mpan2 |
|- ( F : { A , B } --> ZZ -> ( F ` B ) e. ZZ ) |
| 65 |
7 45 64
|
mp2b |
|- ( F ` B ) e. ZZ |
| 66 |
65 53
|
eleqtrri |
|- ( F ` B ) e. ( Base ` ( Scalar ` Z ) ) |
| 67 |
3 26
|
eqeltri |
|- B e. ( Base ` Z ) |
| 68 |
56 57 58 59
|
lmodvscl |
|- ( ( Z e. LMod /\ ( F ` B ) e. ( Base ` ( Scalar ` Z ) ) /\ B e. ( Base ` Z ) ) -> ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) |
| 69 |
44 66 67 68
|
mp3an |
|- ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) |
| 70 |
61 69
|
pm3.2i |
|- ( ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) /\ ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) |
| 71 |
|
eqid |
|- ( +g ` Z ) = ( +g ` Z ) |
| 72 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 73 |
|
id |
|- ( x = A -> x = A ) |
| 74 |
72 73
|
oveq12d |
|- ( x = A -> ( ( F ` x ) ( .s ` Z ) x ) = ( ( F ` A ) ( .s ` Z ) A ) ) |
| 75 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 76 |
|
id |
|- ( x = B -> x = B ) |
| 77 |
75 76
|
oveq12d |
|- ( x = B -> ( ( F ` x ) ( .s ` Z ) x ) = ( ( F ` B ) ( .s ` Z ) B ) ) |
| 78 |
56 71 74 77
|
gsumpr |
|- ( ( Z e. CMnd /\ ( A e. _V /\ B e. _V /\ A =/= B ) /\ ( ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) /\ ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) ) -> ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) = ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) ) |
| 79 |
37 43 70 78
|
mp3an |
|- ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) = ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) |
| 80 |
4
|
fveq1i |
|- ( F ` A ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) |
| 81 |
|
2ex |
|- 2 e. _V |
| 82 |
39 81
|
fvpr1 |
|- ( A =/= B -> ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 ) |
| 83 |
42 82
|
ax-mp |
|- ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 |
| 84 |
80 83
|
eqtri |
|- ( F ` A ) = 2 |
| 85 |
84
|
oveq1i |
|- ( ( F ` A ) ( .s ` Z ) A ) = ( 2 ( .s ` Z ) A ) |
| 86 |
4
|
fveq1i |
|- ( F ` B ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) |
| 87 |
|
negex |
|- -u 3 e. _V |
| 88 |
41 87
|
fvpr2 |
|- ( A =/= B -> ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) = -u 3 ) |
| 89 |
42 88
|
ax-mp |
|- ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) = -u 3 |
| 90 |
86 89
|
eqtri |
|- ( F ` B ) = -u 3 |
| 91 |
90
|
oveq1i |
|- ( ( F ` B ) ( .s ` Z ) B ) = ( -u 3 ( .s ` Z ) B ) |
| 92 |
85 91
|
oveq12i |
|- ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) = ( ( 2 ( .s ` Z ) A ) ( +g ` Z ) ( -u 3 ( .s ` Z ) B ) ) |
| 93 |
|
eqid |
|- { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } |
| 94 |
1 93
|
zlmodzxz0 |
|- { <. 0 , 0 >. , <. 1 , 0 >. } = ( 0g ` Z ) |
| 95 |
94
|
eqcomi |
|- ( 0g ` Z ) = { <. 0 , 0 >. , <. 1 , 0 >. } |
| 96 |
1 2 3 95 71 58
|
zlmodzxzequap |
|- ( ( 2 ( .s ` Z ) A ) ( +g ` Z ) ( -u 3 ( .s ` Z ) B ) ) = ( 0g ` Z ) |
| 97 |
92 96
|
eqtri |
|- ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) = ( 0g ` Z ) |
| 98 |
34 79 97
|
3eqtri |
|- ( F ( linC ` Z ) { A , B } ) = ( 0g ` Z ) |