| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | zlmodzxzldeplem.f |  |-  F = { <. A , 2 >. , <. B , -u 3 >. } | 
						
							| 5 |  | ovex |  |-  ( ZZring freeLMod { 0 , 1 } ) e. _V | 
						
							| 6 | 1 5 | eqeltri |  |-  Z e. _V | 
						
							| 7 | 1 2 3 4 | zlmodzxzldeplem1 |  |-  F e. ( ZZ ^m { A , B } ) | 
						
							| 8 | 1 | zlmodzxzlmod |  |-  ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) | 
						
							| 9 |  | simpr |  |-  ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> ZZring = ( Scalar ` Z ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> ( Scalar ` Z ) = ZZring ) | 
						
							| 11 | 8 10 | ax-mp |  |-  ( Scalar ` Z ) = ZZring | 
						
							| 12 | 11 | fveq2i |  |-  ( Base ` ( Scalar ` Z ) ) = ( Base ` ZZring ) | 
						
							| 13 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 14 | 13 | eqcomi |  |-  ( Base ` ZZring ) = ZZ | 
						
							| 15 | 12 14 | eqtri |  |-  ( Base ` ( Scalar ` Z ) ) = ZZ | 
						
							| 16 | 15 | oveq1i |  |-  ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) = ( ZZ ^m { A , B } ) | 
						
							| 17 | 7 16 | eleqtrri |  |-  F e. ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) | 
						
							| 18 |  | 3z |  |-  3 e. ZZ | 
						
							| 19 |  | 6nn |  |-  6 e. NN | 
						
							| 20 | 19 | nnzi |  |-  6 e. ZZ | 
						
							| 21 | 1 | zlmodzxzel |  |-  ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) | 
						
							| 22 | 18 20 21 | mp2an |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) | 
						
							| 23 |  | 2z |  |-  2 e. ZZ | 
						
							| 24 |  | 4z |  |-  4 e. ZZ | 
						
							| 25 | 1 | zlmodzxzel |  |-  ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) | 
						
							| 26 | 23 24 25 | mp2an |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) | 
						
							| 27 | 2 | eleq1i |  |-  ( A e. ( Base ` Z ) <-> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) | 
						
							| 28 | 3 | eleq1i |  |-  ( B e. ( Base ` Z ) <-> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) | 
						
							| 29 | 27 28 | anbi12i |  |-  ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) <-> ( { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) /\ { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) ) | 
						
							| 30 | 22 26 29 | mpbir2an |  |-  ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) | 
						
							| 31 |  | prelpwi |  |-  ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) -> { A , B } e. ~P ( Base ` Z ) ) | 
						
							| 32 | 30 31 | ax-mp |  |-  { A , B } e. ~P ( Base ` Z ) | 
						
							| 33 |  | lincval |  |-  ( ( Z e. _V /\ F e. ( ( Base ` ( Scalar ` Z ) ) ^m { A , B } ) /\ { A , B } e. ~P ( Base ` Z ) ) -> ( F ( linC ` Z ) { A , B } ) = ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) ) | 
						
							| 34 | 6 17 32 33 | mp3an |  |-  ( F ( linC ` Z ) { A , B } ) = ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) | 
						
							| 35 |  | lmodcmn |  |-  ( Z e. LMod -> Z e. CMnd ) | 
						
							| 36 | 35 | adantr |  |-  ( ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) -> Z e. CMnd ) | 
						
							| 37 | 8 36 | ax-mp |  |-  Z e. CMnd | 
						
							| 38 |  | prex |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. _V | 
						
							| 39 | 2 38 | eqeltri |  |-  A e. _V | 
						
							| 40 |  | prex |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. _V | 
						
							| 41 | 3 40 | eqeltri |  |-  B e. _V | 
						
							| 42 | 1 2 3 | zlmodzxzldeplem |  |-  A =/= B | 
						
							| 43 | 39 41 42 | 3pm3.2i |  |-  ( A e. _V /\ B e. _V /\ A =/= B ) | 
						
							| 44 | 8 | simpli |  |-  Z e. LMod | 
						
							| 45 |  | elmapi |  |-  ( F e. ( ZZ ^m { A , B } ) -> F : { A , B } --> ZZ ) | 
						
							| 46 | 39 | prid1 |  |-  A e. { A , B } | 
						
							| 47 |  | ffvelcdm |  |-  ( ( F : { A , B } --> ZZ /\ A e. { A , B } ) -> ( F ` A ) e. ZZ ) | 
						
							| 48 | 46 47 | mpan2 |  |-  ( F : { A , B } --> ZZ -> ( F ` A ) e. ZZ ) | 
						
							| 49 | 7 45 48 | mp2b |  |-  ( F ` A ) e. ZZ | 
						
							| 50 | 8 9 | ax-mp |  |-  ZZring = ( Scalar ` Z ) | 
						
							| 51 | 50 | eqcomi |  |-  ( Scalar ` Z ) = ZZring | 
						
							| 52 | 51 | fveq2i |  |-  ( Base ` ( Scalar ` Z ) ) = ( Base ` ZZring ) | 
						
							| 53 | 52 14 | eqtri |  |-  ( Base ` ( Scalar ` Z ) ) = ZZ | 
						
							| 54 | 49 53 | eleqtrri |  |-  ( F ` A ) e. ( Base ` ( Scalar ` Z ) ) | 
						
							| 55 | 2 22 | eqeltri |  |-  A e. ( Base ` Z ) | 
						
							| 56 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 57 |  | eqid |  |-  ( Scalar ` Z ) = ( Scalar ` Z ) | 
						
							| 58 |  | eqid |  |-  ( .s ` Z ) = ( .s ` Z ) | 
						
							| 59 |  | eqid |  |-  ( Base ` ( Scalar ` Z ) ) = ( Base ` ( Scalar ` Z ) ) | 
						
							| 60 | 56 57 58 59 | lmodvscl |  |-  ( ( Z e. LMod /\ ( F ` A ) e. ( Base ` ( Scalar ` Z ) ) /\ A e. ( Base ` Z ) ) -> ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) ) | 
						
							| 61 | 44 54 55 60 | mp3an |  |-  ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) | 
						
							| 62 | 41 | prid2 |  |-  B e. { A , B } | 
						
							| 63 |  | ffvelcdm |  |-  ( ( F : { A , B } --> ZZ /\ B e. { A , B } ) -> ( F ` B ) e. ZZ ) | 
						
							| 64 | 62 63 | mpan2 |  |-  ( F : { A , B } --> ZZ -> ( F ` B ) e. ZZ ) | 
						
							| 65 | 7 45 64 | mp2b |  |-  ( F ` B ) e. ZZ | 
						
							| 66 | 65 53 | eleqtrri |  |-  ( F ` B ) e. ( Base ` ( Scalar ` Z ) ) | 
						
							| 67 | 3 26 | eqeltri |  |-  B e. ( Base ` Z ) | 
						
							| 68 | 56 57 58 59 | lmodvscl |  |-  ( ( Z e. LMod /\ ( F ` B ) e. ( Base ` ( Scalar ` Z ) ) /\ B e. ( Base ` Z ) ) -> ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) | 
						
							| 69 | 44 66 67 68 | mp3an |  |-  ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) | 
						
							| 70 | 61 69 | pm3.2i |  |-  ( ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) /\ ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) | 
						
							| 71 |  | eqid |  |-  ( +g ` Z ) = ( +g ` Z ) | 
						
							| 72 |  | fveq2 |  |-  ( x = A -> ( F ` x ) = ( F ` A ) ) | 
						
							| 73 |  | id |  |-  ( x = A -> x = A ) | 
						
							| 74 | 72 73 | oveq12d |  |-  ( x = A -> ( ( F ` x ) ( .s ` Z ) x ) = ( ( F ` A ) ( .s ` Z ) A ) ) | 
						
							| 75 |  | fveq2 |  |-  ( x = B -> ( F ` x ) = ( F ` B ) ) | 
						
							| 76 |  | id |  |-  ( x = B -> x = B ) | 
						
							| 77 | 75 76 | oveq12d |  |-  ( x = B -> ( ( F ` x ) ( .s ` Z ) x ) = ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 78 | 56 71 74 77 | gsumpr |  |-  ( ( Z e. CMnd /\ ( A e. _V /\ B e. _V /\ A =/= B ) /\ ( ( ( F ` A ) ( .s ` Z ) A ) e. ( Base ` Z ) /\ ( ( F ` B ) ( .s ` Z ) B ) e. ( Base ` Z ) ) ) -> ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) = ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) ) | 
						
							| 79 | 37 43 70 78 | mp3an |  |-  ( Z gsum ( x e. { A , B } |-> ( ( F ` x ) ( .s ` Z ) x ) ) ) = ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) | 
						
							| 80 | 4 | fveq1i |  |-  ( F ` A ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) | 
						
							| 81 |  | 2ex |  |-  2 e. _V | 
						
							| 82 | 39 81 | fvpr1 |  |-  ( A =/= B -> ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 ) | 
						
							| 83 | 42 82 | ax-mp |  |-  ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 | 
						
							| 84 | 80 83 | eqtri |  |-  ( F ` A ) = 2 | 
						
							| 85 | 84 | oveq1i |  |-  ( ( F ` A ) ( .s ` Z ) A ) = ( 2 ( .s ` Z ) A ) | 
						
							| 86 | 4 | fveq1i |  |-  ( F ` B ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) | 
						
							| 87 |  | negex |  |-  -u 3 e. _V | 
						
							| 88 | 41 87 | fvpr2 |  |-  ( A =/= B -> ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) = -u 3 ) | 
						
							| 89 | 42 88 | ax-mp |  |-  ( { <. A , 2 >. , <. B , -u 3 >. } ` B ) = -u 3 | 
						
							| 90 | 86 89 | eqtri |  |-  ( F ` B ) = -u 3 | 
						
							| 91 | 90 | oveq1i |  |-  ( ( F ` B ) ( .s ` Z ) B ) = ( -u 3 ( .s ` Z ) B ) | 
						
							| 92 | 85 91 | oveq12i |  |-  ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) = ( ( 2 ( .s ` Z ) A ) ( +g ` Z ) ( -u 3 ( .s ` Z ) B ) ) | 
						
							| 93 |  | eqid |  |-  { <. 0 , 0 >. , <. 1 , 0 >. } = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 94 | 1 93 | zlmodzxz0 |  |-  { <. 0 , 0 >. , <. 1 , 0 >. } = ( 0g ` Z ) | 
						
							| 95 | 94 | eqcomi |  |-  ( 0g ` Z ) = { <. 0 , 0 >. , <. 1 , 0 >. } | 
						
							| 96 | 1 2 3 95 71 58 | zlmodzxzequap |  |-  ( ( 2 ( .s ` Z ) A ) ( +g ` Z ) ( -u 3 ( .s ` Z ) B ) ) = ( 0g ` Z ) | 
						
							| 97 | 92 96 | eqtri |  |-  ( ( ( F ` A ) ( .s ` Z ) A ) ( +g ` Z ) ( ( F ` B ) ( .s ` Z ) B ) ) = ( 0g ` Z ) | 
						
							| 98 | 34 79 97 | 3eqtri |  |-  ( F ( linC ` Z ) { A , B } ) = ( 0g ` Z ) |