Metamath Proof Explorer


Theorem zlmodzxzldeplem3

Description: Lemma 3 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z = ring freeLMod 0 1
zlmodzxzldep.a A = 0 3 1 6
zlmodzxzldep.b B = 0 2 1 4
zlmodzxzldeplem.f F = A 2 B 3
Assertion zlmodzxzldeplem3 F linC Z A B = 0 Z

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z = ring freeLMod 0 1
2 zlmodzxzldep.a A = 0 3 1 6
3 zlmodzxzldep.b B = 0 2 1 4
4 zlmodzxzldeplem.f F = A 2 B 3
5 ovex ring freeLMod 0 1 V
6 1 5 eqeltri Z V
7 1 2 3 4 zlmodzxzldeplem1 F A B
8 1 zlmodzxzlmod Z LMod ring = Scalar Z
9 simpr Z LMod ring = Scalar Z ring = Scalar Z
10 9 eqcomd Z LMod ring = Scalar Z Scalar Z = ring
11 8 10 ax-mp Scalar Z = ring
12 11 fveq2i Base Scalar Z = Base ring
13 zringbas = Base ring
14 13 eqcomi Base ring =
15 12 14 eqtri Base Scalar Z =
16 15 oveq1i Base Scalar Z A B = A B
17 7 16 eleqtrri F Base Scalar Z A B
18 3z 3
19 6nn 6
20 19 nnzi 6
21 1 zlmodzxzel 3 6 0 3 1 6 Base Z
22 18 20 21 mp2an 0 3 1 6 Base Z
23 2z 2
24 4z 4
25 1 zlmodzxzel 2 4 0 2 1 4 Base Z
26 23 24 25 mp2an 0 2 1 4 Base Z
27 2 eleq1i A Base Z 0 3 1 6 Base Z
28 3 eleq1i B Base Z 0 2 1 4 Base Z
29 27 28 anbi12i A Base Z B Base Z 0 3 1 6 Base Z 0 2 1 4 Base Z
30 22 26 29 mpbir2an A Base Z B Base Z
31 prelpwi A Base Z B Base Z A B 𝒫 Base Z
32 30 31 ax-mp A B 𝒫 Base Z
33 lincval Z V F Base Scalar Z A B A B 𝒫 Base Z F linC Z A B = Z x A B F x Z x
34 6 17 32 33 mp3an F linC Z A B = Z x A B F x Z x
35 lmodcmn Z LMod Z CMnd
36 35 adantr Z LMod ring = Scalar Z Z CMnd
37 8 36 ax-mp Z CMnd
38 prex 0 3 1 6 V
39 2 38 eqeltri A V
40 prex 0 2 1 4 V
41 3 40 eqeltri B V
42 1 2 3 zlmodzxzldeplem A B
43 39 41 42 3pm3.2i A V B V A B
44 8 simpli Z LMod
45 elmapi F A B F : A B
46 39 prid1 A A B
47 ffvelrn F : A B A A B F A
48 46 47 mpan2 F : A B F A
49 7 45 48 mp2b F A
50 8 9 ax-mp ring = Scalar Z
51 50 eqcomi Scalar Z = ring
52 51 fveq2i Base Scalar Z = Base ring
53 52 14 eqtri Base Scalar Z =
54 49 53 eleqtrri F A Base Scalar Z
55 2 22 eqeltri A Base Z
56 eqid Base Z = Base Z
57 eqid Scalar Z = Scalar Z
58 eqid Z = Z
59 eqid Base Scalar Z = Base Scalar Z
60 56 57 58 59 lmodvscl Z LMod F A Base Scalar Z A Base Z F A Z A Base Z
61 44 54 55 60 mp3an F A Z A Base Z
62 41 prid2 B A B
63 ffvelrn F : A B B A B F B
64 62 63 mpan2 F : A B F B
65 7 45 64 mp2b F B
66 65 53 eleqtrri F B Base Scalar Z
67 3 26 eqeltri B Base Z
68 56 57 58 59 lmodvscl Z LMod F B Base Scalar Z B Base Z F B Z B Base Z
69 44 66 67 68 mp3an F B Z B Base Z
70 61 69 pm3.2i F A Z A Base Z F B Z B Base Z
71 eqid + Z = + Z
72 fveq2 x = A F x = F A
73 id x = A x = A
74 72 73 oveq12d x = A F x Z x = F A Z A
75 fveq2 x = B F x = F B
76 id x = B x = B
77 75 76 oveq12d x = B F x Z x = F B Z B
78 56 71 74 77 gsumpr Z CMnd A V B V A B F A Z A Base Z F B Z B Base Z Z x A B F x Z x = F A Z A + Z F B Z B
79 37 43 70 78 mp3an Z x A B F x Z x = F A Z A + Z F B Z B
80 4 fveq1i F A = A 2 B 3 A
81 2ex 2 V
82 39 81 fvpr1 A B A 2 B 3 A = 2
83 42 82 ax-mp A 2 B 3 A = 2
84 80 83 eqtri F A = 2
85 84 oveq1i F A Z A = 2 Z A
86 4 fveq1i F B = A 2 B 3 B
87 negex 3 V
88 41 87 fvpr2 A B A 2 B 3 B = 3
89 42 88 ax-mp A 2 B 3 B = 3
90 86 89 eqtri F B = 3
91 90 oveq1i F B Z B = -3 Z B
92 85 91 oveq12i F A Z A + Z F B Z B = 2 Z A + Z -3 Z B
93 eqid 0 0 1 0 = 0 0 1 0
94 1 93 zlmodzxz0 0 0 1 0 = 0 Z
95 94 eqcomi 0 Z = 0 0 1 0
96 1 2 3 95 71 58 zlmodzxzequap 2 Z A + Z -3 Z B = 0 Z
97 92 96 eqtri F A Z A + Z F B Z B = 0 Z
98 34 79 97 3eqtri F linC Z A B = 0 Z