Metamath Proof Explorer


Theorem zlmodzxzldeplem4

Description: Lemma 4 for zlmodzxzldep . (Contributed by AV, 24-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypotheses zlmodzxzldep.z Z=ringfreeLMod01
zlmodzxzldep.a A=0316
zlmodzxzldep.b B=0214
zlmodzxzldeplem.f F=A2B3
Assertion zlmodzxzldeplem4 yABFy0

Proof

Step Hyp Ref Expression
1 zlmodzxzldep.z Z=ringfreeLMod01
2 zlmodzxzldep.a A=0316
3 zlmodzxzldep.b B=0214
4 zlmodzxzldeplem.f F=A2B3
5 prex 0316V
6 2 5 eqeltri AV
7 prex 0214V
8 3 7 eqeltri BV
9 2ne0 20
10 4 fveq1i FA=A2B3A
11 1 2 3 zlmodzxzldeplem AB
12 2ex 2V
13 6 12 fvpr1 ABA2B3A=2
14 11 13 mp1i AVBVA2B3A=2
15 10 14 eqtrid AVBVFA=2
16 15 neeq1d AVBVFA020
17 9 16 mpbiri AVBVFA0
18 17 orcd AVBVFA0FB0
19 fveq2 y=AFy=FA
20 19 neeq1d y=AFy0FA0
21 fveq2 y=BFy=FB
22 21 neeq1d y=BFy0FB0
23 20 22 rexprg AVBVyABFy0FA0FB0
24 18 23 mpbird AVBVyABFy0
25 6 8 24 mp2an yABFy0