| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | zlmodzxzldeplem.f |  |-  F = { <. A , 2 >. , <. B , -u 3 >. } | 
						
							| 5 |  | prex |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. _V | 
						
							| 6 | 2 5 | eqeltri |  |-  A e. _V | 
						
							| 7 |  | prex |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. _V | 
						
							| 8 | 3 7 | eqeltri |  |-  B e. _V | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 4 | fveq1i |  |-  ( F ` A ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) | 
						
							| 11 | 1 2 3 | zlmodzxzldeplem |  |-  A =/= B | 
						
							| 12 |  | 2ex |  |-  2 e. _V | 
						
							| 13 | 6 12 | fvpr1 |  |-  ( A =/= B -> ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 ) | 
						
							| 14 | 11 13 | mp1i |  |-  ( ( A e. _V /\ B e. _V ) -> ( { <. A , 2 >. , <. B , -u 3 >. } ` A ) = 2 ) | 
						
							| 15 | 10 14 | eqtrid |  |-  ( ( A e. _V /\ B e. _V ) -> ( F ` A ) = 2 ) | 
						
							| 16 | 15 | neeq1d |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( F ` A ) =/= 0 <-> 2 =/= 0 ) ) | 
						
							| 17 | 9 16 | mpbiri |  |-  ( ( A e. _V /\ B e. _V ) -> ( F ` A ) =/= 0 ) | 
						
							| 18 | 17 | orcd |  |-  ( ( A e. _V /\ B e. _V ) -> ( ( F ` A ) =/= 0 \/ ( F ` B ) =/= 0 ) ) | 
						
							| 19 |  | fveq2 |  |-  ( y = A -> ( F ` y ) = ( F ` A ) ) | 
						
							| 20 | 19 | neeq1d |  |-  ( y = A -> ( ( F ` y ) =/= 0 <-> ( F ` A ) =/= 0 ) ) | 
						
							| 21 |  | fveq2 |  |-  ( y = B -> ( F ` y ) = ( F ` B ) ) | 
						
							| 22 | 21 | neeq1d |  |-  ( y = B -> ( ( F ` y ) =/= 0 <-> ( F ` B ) =/= 0 ) ) | 
						
							| 23 | 20 22 | rexprg |  |-  ( ( A e. _V /\ B e. _V ) -> ( E. y e. { A , B } ( F ` y ) =/= 0 <-> ( ( F ` A ) =/= 0 \/ ( F ` B ) =/= 0 ) ) ) | 
						
							| 24 | 18 23 | mpbird |  |-  ( ( A e. _V /\ B e. _V ) -> E. y e. { A , B } ( F ` y ) =/= 0 ) | 
						
							| 25 | 6 8 24 | mp2an |  |-  E. y e. { A , B } ( F ` y ) =/= 0 |