| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmodzxzldep.z |  |-  Z = ( ZZring freeLMod { 0 , 1 } ) | 
						
							| 2 |  | zlmodzxzldep.a |  |-  A = { <. 0 , 3 >. , <. 1 , 6 >. } | 
						
							| 3 |  | zlmodzxzldep.b |  |-  B = { <. 0 , 2 >. , <. 1 , 4 >. } | 
						
							| 4 |  | eqid |  |-  { <. A , 2 >. , <. B , -u 3 >. } = { <. A , 2 >. , <. B , -u 3 >. } | 
						
							| 5 | 1 2 3 4 | zlmodzxzldeplem1 |  |-  { <. A , 2 >. , <. B , -u 3 >. } e. ( ZZ ^m { A , B } ) | 
						
							| 6 | 1 2 3 4 | zlmodzxzldeplem2 |  |-  { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 | 
						
							| 7 | 1 2 3 4 | zlmodzxzldeplem3 |  |-  ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) | 
						
							| 8 | 1 2 3 4 | zlmodzxzldeplem4 |  |-  E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 | 
						
							| 9 | 6 7 8 | 3pm3.2i |  |-  ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) | 
						
							| 10 |  | breq1 |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x finSupp 0 <-> { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x ( linC ` Z ) { A , B } ) = ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) <-> ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) ) ) | 
						
							| 13 |  | fveq1 |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x ` y ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) ) | 
						
							| 14 | 13 | neeq1d |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x ` y ) =/= 0 <-> ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) | 
						
							| 15 | 14 | rexbidv |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( E. y e. { A , B } ( x ` y ) =/= 0 <-> E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) | 
						
							| 16 | 10 12 15 | 3anbi123d |  |-  ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) <-> ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) ) | 
						
							| 17 | 16 | rspcev |  |-  ( ( { <. A , 2 >. , <. B , -u 3 >. } e. ( ZZ ^m { A , B } ) /\ ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) -> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) | 
						
							| 18 | 5 9 17 | mp2an |  |-  E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) | 
						
							| 19 |  | ovex |  |-  ( ZZring freeLMod { 0 , 1 } ) e. _V | 
						
							| 20 | 1 19 | eqeltri |  |-  Z e. _V | 
						
							| 21 |  | 3z |  |-  3 e. ZZ | 
						
							| 22 |  | 6nn |  |-  6 e. NN | 
						
							| 23 | 22 | nnzi |  |-  6 e. ZZ | 
						
							| 24 | 1 | zlmodzxzel |  |-  ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) | 
						
							| 25 | 21 23 24 | mp2an |  |-  { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) | 
						
							| 26 | 2 25 | eqeltri |  |-  A e. ( Base ` Z ) | 
						
							| 27 |  | 2z |  |-  2 e. ZZ | 
						
							| 28 |  | 4z |  |-  4 e. ZZ | 
						
							| 29 | 1 | zlmodzxzel |  |-  ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) | 
						
							| 30 | 27 28 29 | mp2an |  |-  { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) | 
						
							| 31 | 3 30 | eqeltri |  |-  B e. ( Base ` Z ) | 
						
							| 32 |  | prelpwi |  |-  ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) -> { A , B } e. ~P ( Base ` Z ) ) | 
						
							| 33 | 26 31 32 | mp2an |  |-  { A , B } e. ~P ( Base ` Z ) | 
						
							| 34 |  | eqid |  |-  ( Base ` Z ) = ( Base ` Z ) | 
						
							| 35 |  | eqid |  |-  ( 0g ` Z ) = ( 0g ` Z ) | 
						
							| 36 | 1 | zlmodzxzlmod |  |-  ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) | 
						
							| 37 | 36 | simpri |  |-  ZZring = ( Scalar ` Z ) | 
						
							| 38 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 39 |  | zring0 |  |-  0 = ( 0g ` ZZring ) | 
						
							| 40 | 34 35 37 38 39 | islindeps |  |-  ( ( Z e. _V /\ { A , B } e. ~P ( Base ` Z ) ) -> ( { A , B } linDepS Z <-> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) ) | 
						
							| 41 | 20 33 40 | mp2an |  |-  ( { A , B } linDepS Z <-> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) | 
						
							| 42 | 18 41 | mpbir |  |-  { A , B } linDepS Z |