Step |
Hyp |
Ref |
Expression |
1 |
|
zlmodzxzldep.z |
|- Z = ( ZZring freeLMod { 0 , 1 } ) |
2 |
|
zlmodzxzldep.a |
|- A = { <. 0 , 3 >. , <. 1 , 6 >. } |
3 |
|
zlmodzxzldep.b |
|- B = { <. 0 , 2 >. , <. 1 , 4 >. } |
4 |
|
eqid |
|- { <. A , 2 >. , <. B , -u 3 >. } = { <. A , 2 >. , <. B , -u 3 >. } |
5 |
1 2 3 4
|
zlmodzxzldeplem1 |
|- { <. A , 2 >. , <. B , -u 3 >. } e. ( ZZ ^m { A , B } ) |
6 |
1 2 3 4
|
zlmodzxzldeplem2 |
|- { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 |
7 |
1 2 3 4
|
zlmodzxzldeplem3 |
|- ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) |
8 |
1 2 3 4
|
zlmodzxzldeplem4 |
|- E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 |
9 |
6 7 8
|
3pm3.2i |
|- ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) |
10 |
|
breq1 |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x finSupp 0 <-> { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 ) ) |
11 |
|
oveq1 |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x ( linC ` Z ) { A , B } ) = ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) ) |
12 |
11
|
eqeq1d |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) <-> ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) ) ) |
13 |
|
fveq1 |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( x ` y ) = ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) ) |
14 |
13
|
neeq1d |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x ` y ) =/= 0 <-> ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) |
15 |
14
|
rexbidv |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( E. y e. { A , B } ( x ` y ) =/= 0 <-> E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) |
16 |
10 12 15
|
3anbi123d |
|- ( x = { <. A , 2 >. , <. B , -u 3 >. } -> ( ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) <-> ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) ) |
17 |
16
|
rspcev |
|- ( ( { <. A , 2 >. , <. B , -u 3 >. } e. ( ZZ ^m { A , B } ) /\ ( { <. A , 2 >. , <. B , -u 3 >. } finSupp 0 /\ ( { <. A , 2 >. , <. B , -u 3 >. } ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( { <. A , 2 >. , <. B , -u 3 >. } ` y ) =/= 0 ) ) -> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) |
18 |
5 9 17
|
mp2an |
|- E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) |
19 |
|
ovex |
|- ( ZZring freeLMod { 0 , 1 } ) e. _V |
20 |
1 19
|
eqeltri |
|- Z e. _V |
21 |
|
3z |
|- 3 e. ZZ |
22 |
|
6nn |
|- 6 e. NN |
23 |
22
|
nnzi |
|- 6 e. ZZ |
24 |
1
|
zlmodzxzel |
|- ( ( 3 e. ZZ /\ 6 e. ZZ ) -> { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) ) |
25 |
21 23 24
|
mp2an |
|- { <. 0 , 3 >. , <. 1 , 6 >. } e. ( Base ` Z ) |
26 |
2 25
|
eqeltri |
|- A e. ( Base ` Z ) |
27 |
|
2z |
|- 2 e. ZZ |
28 |
|
4z |
|- 4 e. ZZ |
29 |
1
|
zlmodzxzel |
|- ( ( 2 e. ZZ /\ 4 e. ZZ ) -> { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) ) |
30 |
27 28 29
|
mp2an |
|- { <. 0 , 2 >. , <. 1 , 4 >. } e. ( Base ` Z ) |
31 |
3 30
|
eqeltri |
|- B e. ( Base ` Z ) |
32 |
|
prelpwi |
|- ( ( A e. ( Base ` Z ) /\ B e. ( Base ` Z ) ) -> { A , B } e. ~P ( Base ` Z ) ) |
33 |
26 31 32
|
mp2an |
|- { A , B } e. ~P ( Base ` Z ) |
34 |
|
eqid |
|- ( Base ` Z ) = ( Base ` Z ) |
35 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
36 |
1
|
zlmodzxzlmod |
|- ( Z e. LMod /\ ZZring = ( Scalar ` Z ) ) |
37 |
36
|
simpri |
|- ZZring = ( Scalar ` Z ) |
38 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
39 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
40 |
34 35 37 38 39
|
islindeps |
|- ( ( Z e. _V /\ { A , B } e. ~P ( Base ` Z ) ) -> ( { A , B } linDepS Z <-> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) ) |
41 |
20 33 40
|
mp2an |
|- ( { A , B } linDepS Z <-> E. x e. ( ZZ ^m { A , B } ) ( x finSupp 0 /\ ( x ( linC ` Z ) { A , B } ) = ( 0g ` Z ) /\ E. y e. { A , B } ( x ` y ) =/= 0 ) ) |
42 |
18 41
|
mpbir |
|- { A , B } linDepS Z |